
Ramowe programy szkoleń
dla nauczycieli szkół podstawowych
z zakresu kształcenia myślenia algorytmicznego
i nauki programowania

Maciej
Borowiecki

Krzysztof
Chechłacz

Katarzyna
Olędzka

Agnieszka
Samulska

Ramowe programy szkoleń
dla nauczycieli szkół podstawowych
z zakresu kształcenia myślenia algorytmicznego
i nauki programowania

warszawa 2018

Krzysztof
Chechłacz

Katarzyna
Olędzka

Agnieszka
Samulska

Maciej
Borowiecki

Recenzja naukowa
dr Anna Beata Kwiatkowska – WMiI UMK

Redakcja naukowa
Maciej Borowiecki

Redakcja językowa i korekta
Karolina Strugińska

Opracowanie graficzne, projekt okładki
Wojciech Romerowicz
grafika: © Mimi Potter/Fotolia.com, © Arthead/Fotolia.com

Redakcja techniczna i skład
Wojciech Romerowicz

ISBN 978-83-66047-03-7

Warszawa 2018
Wydanie I

Publikacja jest rozpowszechniana na zasadach wolnej licencji Creative Commons –
Użycie Niekomercyjne 3.0 Polska (CC-BY-NC)

Ośrodek Rozwoju Edukacji
Aleje Ujazdowskie 28
00-478 Warszawa
www.ore.edu.pl
tel. 22 345 37 00
fax 22 345 37 70

https://www.dev.ore.edu.pl/

Spis treści
Koncepcja i założenia ogólne���4

Ramowy program szkolenia dla nauczycieli klas 1–3
(I etap edukacyjny)��7

Ramowy program szkolenia dla nauczycieli klas 4–6
(II etap edukacyjny)�� 47

Ramowy program szkolenia dla nauczycieli klas 4–6
(II etap edukacyjny) – wersja skrócona��� 98

Ramowy program szkolenia dla nauczycieli klas 7–8
(II etap edukacyjny)��130

Załącznik 1
Wymagania wstępne – kompetencje TIK���182

Załącznik 2
Wykaz adresów internetowych��184

4

Koncepcja i założenia ogólne
Ramowe programy szkoleń dla nauczycieli szkół podstawowych z zakresu
nauki programowania na I i II etapie edukacyjnym zostały opracowane
zgodnie z nową podstawą programową edukacji informatycznej w ramach
kształcenia wczesnoszkolnego oraz przedmiotu informatyka w klasach 4–8
szkoły podstawowej (Dz.U. z 2017 r., poz. 356). Należy podkreślić, że programy
szkoleń dotyczą jedynie podniesienia kompetencji nauczycieli w zakresie
algorytmicznego rozwiązywania problemów, myślenia komputacyjnego oraz
programowania i nie wyczerpują wszystkich zapisów podstawy programowej
dla edukacji informatycznej (w klasach 1–3) i przedmiotu informatyka (w klasach
4–8). Nie zastępują także studiów podyplomowych w zakresie przygotowania
nauczycieli do nauczania przedmiotu informatyka, co więcej – wymaganiem
wstępnym stawianym uczestnikom szkolenia (z wyjątkiem nauczycieli edukacji
wczesnoszkolnej) jest posiadanie uprawnień do nauczania przedmiotu, a więc
kierunkowe wykształcenie wyższe lub ukończone studia podyplomowe.

Nowa podstawa programowa w przypadku informatyki wprowadza bardzo
poważne zmiany, które były postulowane przez środowiska informatyczne
związane z edukacją od kilku lat. Już sama zmiana nazwy przedmiotu
w szkole podstawowej z „zajęcia komputerowe” na „edukacja informatyczna”
i „informatyka” świadczy o tym, że nowa podstawa kładzie nacisk na inne treści
i umiejętności. Wprowadza powszechną naukę programowania na wszystkich
etapach edukacyjnych. Programowanie należy tu rozumieć, jako całościowy
proces rozwiązywania problemu od jego sformułowania, specyfikacji
(określenia danych i wyników), poszukiwana metody rozwiązania (algorytmu/
algorytmów jego rozwiązania), do opracowania i zaprogramowania rozwiązania,
przetestowania i ewentualnej korekty, z wykorzystaniem odpowiednio dobranej
do wieku uczniów aplikacji lub języka programowania.

Cele ogólne kształcenia informatycznego są takie same dla wszystkich
etapów edukacyjnych. Opis wymagań szczegółowych ma charakter spiralny

5

Koncepcja i założenia ogólne

(przyrostowy) – na każdym etapie edukacyjnym wymaga się od uczniów
umiejętności zdobytych na wcześniejszych etapach edukacyjnych i rozszerza się
je o umiejętności nowe. Tak też zostały przygotowane ramowe programy szkoleń
dla nauczycieli.

Warto zauważyć, że umiejętności nabyte podczas zajęć informatyki, są
przydatne zarówno na zajęciach innych przedmiotów, jak i w życiu codziennym.
Umiejętności informatyczne są związane z rozwojem logicznego myślenia,
precyzyjnego prezentowania myśli i pomysłów, zapisywania w języku formalnym
tego, co rozumiemy intuicyjnie. Ponadto pomagają doskonalić umiejętność
dobrej organizacji pracy oraz współpracy w grupie. Oczekuje się, że uczniowie
wkraczający w zawodowe i dorosłe życie będą przygotowani do podjęcia
obowiązków i wyzwań, jakie stawia przed nimi XXI wiek. Powinni zatem poznać
podstawowe metody informatyki, aby w przyszłości stosować je w praktycznych
sytuacjach w różnych dziedzinach.

Opracowane zostały trzy ramowe programy szkoleń (każde z nich obejmuje 40
godzin lekcyjnych zajęć stacjonarnych) oraz jeden program w wersji skróconej
(10 godzin lekcyjnych zajęć stacjonarnych). Ze względu na specyfikę nauczania
w klasach 1–3, w szczególności zalecenia, aby edukację informatyczną na tym
poziomie prowadził nauczyciel nauczania zintegrowanego (a nie nauczyciel
informatyki klas starszych) i łączył edukację informatyczną z pozostałymi
edukacjami, program tego szkolenia należy traktować oddzielnie.

Treści nauczania dla klas 4–6 i 7–8 w podstawie programowej zostały
sformułowane oddzielnie, w związku z tym proponowane są także dwa programy
szkoleń, dla nauczających odpowiednio na poziomie klas 4–6 i 7–8. Należy je
jednak traktować, jako propozycję dwuczęściowego szkolenia. Nauczyciele,
którzy uczą lub planują uczyć, zarówno w klasach 4–6, jak i 7–8 powinni
ukończyć obydwie części szkolenia. Dla nauczycieli, którzy już posiadają
doświadczenie w realizacji treści programowych związanych z nauczaniem
programowania, bądź realizowali zajęcia związane z programowaniem
na zajęciach pozaszkolnych lub w ramach przedmiotu zajęcia komputerowe,
przewidziana jest skrócona 10‍‑godzinna wersja szkolenia na poziomie klas 4–6.

Każdy z programów zawiera informacje ogólne, wymagania wstępne stawiane
uczestnikom szkoleń, cele szkolenia, treści nauczania, przykładowy rozkład
materiału, omówienie poszczególnych tematów, przykładowe scenariusze zajęć

6

Koncepcja i założenia ogólne

i zadania (w większości z rozwiązaniami). Omówiono poszczególne tematy
dość obszernie, aby maksymalnie ułatwić placówkom doskonalenia nauczycieli
przeprowadzenie szkolenia.

Na poziomie treści nauczania programy nie odwołują się do konkretnych
narzędzi i języków programowania, mówią tylko o wykorzystaniu środowiska
języka wizualnego na poziomie klas 1–3 oraz 4–6, natomiast języka tekstowego
w klasach 7–8. W szkoleniu dotyczącym nauczania na poziomie klas 4–6
proponowane jest wprowadzenie podstaw języka tekstowego, aby przygotować
nauczycieli i uczniów do łagodnego przejścia do programowania algorytmów
w języku wysokiego poziomu w klasach najstarszych szkoły podstawowej.

W przykładowych rozkładach materiału programy odwołują się do konkretnych
języków programowania. Omówienia poszczególnych tematów oraz przykładowe
scenariusze zajęć i zadania zawierają często implementację rozwiązywanego
problemu w konkretnym języku programowania. Jako język wizualny został
wybrany najbardziej popularny obecnie Scratch, językiem programowania
tekstowego jest Python (w wersji 3.*). Warto podkreślić, że translatory tych
języków są powszechnie dostępne i bezpłatne. Treści nauczania można
zrealizować, wybierając dowolne języki programowania wizualnego i tekstowego,
należy wówczas opracować własny rozkład materiału.

Niektóre propozycje w programie dla klas 1–3 i 4–6 dotyczące wykorzystania
środowiska Scratch powtarzają się, ponieważ grupy nauczycieli uczestniczących
w tych szkoleniach prawdopodobnie będą rozłączne. Szkolenie na poziomie klas
1–3 jest adresowane przede wszystkim do nauczycieli edukacji wczesnoszkolnej,
a pozostałe szkolenia – do nauczycieli informatyki.

7

Agnieszka Samulska

Ramowy program szkolenia dla nauczycieli
klas 1–3 (I ETAP EDUKACYJNY)

Informacje ogólne
Szkolenie jest przeznaczone dla nauczycieli edukacji wczesnoszkolnej oraz
nauczycieli informatyki uczących lub planujących nauczać w klasach 1–3
szkół podstawowych. Jego głównym celem jest przygotowanie nauczycieli
do realizacji nowej podstawy programowej edukacji informatycznej w ramach
edukacji wczesnoszkolnej w zakresie rozumienia, analizowania i rozwiązywania
problemów oraz programowania na poziomie klas 1–3. Szkolenie obejmuje 40
godzin lekcyjnych zajęć stacjonarnych.

Zajęcia mają z założenia charakter przede wszystkim warsztatowy, uczestnicy
pod nadzorem prowadzącego samodzielnie rozwiązują problemy, w szczególności
wcielają się w rolę ucznia. Część zajęć należy przeznaczyć na wykład i dyskusję
oraz omówienie zagadnień metodycznych. Praca praktyczna pozwoli słuchaczom
nabrać biegłości w posługiwaniu się narzędziami i metodami informatycznymi.
Nie mniej ważna jest również refleksja pedagogiczna – w jakim celu
wprowadzamy dane zagadnienia, jak zorganizować proces dydaktyczny, na co
szczególnie zwrócić uwagę i jakie mogą wystąpić trudności. Podczas zajęć nie
tylko prowadzący dzielą się swoją wiedzą, ale także słuchacze wymieniają się
doświadczeniami.

Wymagania wstępne stawiane uczestnikom szkolenia
Uczestnik szkolenia powinien posiadać kompetencje wymienione
w Załączniku 1, ponadto posiadać uprawnienia do nauczania edukacji
wczesnoszkolnej lub informatyki w szkole podstawowej.

8

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Cele szkolenia:
•	 przygotowanie nauczycieli do prowadzenia zajęć edukacji informatycznej

według nowej postawy programowej;
•	 kształcenie kompetencji nauczycieli w zakresie programowania

z wykorzystaniem środowisk do programowania wizualnego;
•	 rozwijanie u uczniów umiejętności rozumienia, analizowania

i rozwiązywania problemów – w tym myślenia algorytmicznego – poprzez
dobór ciekawych zadań.

Treści nauczania:
1.	 rozwijanie myślenia algorytmicznego dzieci młodszych poprzez gry

i zabawy oraz dostosowane do ich wieku narzędzia TIK;
2.	 rozwiązywanie zadań, zagadek i łamigłówek prowadzących do odkrywania

algorytmów;
3.	 rozwiązywanie problemów wymagających tworzenia sekwencji poleceń dla

realizacji planu działania prowadzącego do osiągnięcia określonego celu;
4.	 zapisywanie efektów własnej pracy;
5.	 sterowanie obiektem za pomocą pojedynczych poleceń i ich sekwencji,

z nawiązaniem do konkretnych form, metod i środków rozwijania
u uczniów myślenia komputacyjnego;

6.	 wizualne programowanie prostych sytuacji lub historyjek,
z uwzględnieniem pracy grupowej.

Przykładowy rozkład materiału:

Temat i tematy cząstkowe
Punkt
podstawy
programowej

Treści Liczba
godzin

1.	 Wprowadzenie 2

•	 Organizacja szkolenia

•	 Dlaczego warto uczyć się programowania?
Podstawa programowa edukacji
informatycznej dla pierwszego etapu
edukacyjnego

•	 Jak prowadzić zajęcia z najmłodszymi

VII 1–6 0,5

0,5

1

9

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

2.	 Rozwijanie myślenia algorytmicznego 9

•	 Projekt „Informatyka bez komputera”

•	 Konkurs informatyczny „Bóbr”

•	 Gry i zabawy bez komputera

•	 Projekt „Godzina Kodowania”

VII.1.1

VII.1.2

VII.1.3

VII.2.1

1, 2, 3, 5 1

2

3

3

3.	 Programowanie w ScratchJr 3

•	 Pierwsze kroki w ScratchJr

•	 Przygotowujemy opowiadania
multimedialne

•	 Podsumowanie – giełda pomysłów

VII.1.1

VII.1.2

VII.2.1

VII.2.3

1, 3, 4, 5, 6 0,5

2

0,5

4.	 Programowanie w środowisku Scratch 18

•	 Pierwsze kroki w Scratchu

•	 Opowiadania multimedialne

•	 Gry i zabawy edukacyjne

•	 Symulacje

•	 Jak wykorzystać Scratcha na zajęciach

•	 Realizujemy własne pomysły – praca
zespołowa

•	 Podsumowanie – programowanie
w środowisku wizualnym

VII.1.1

VII.1.2

VII.2.1

VII.2.3

1, 3, 4, 5, 6 1

4

4

3

1

4

1

5.	 Praca z uczniami o różnych potrzebach edukacyjnych 6

•	 Praca z uczniem zdolnym, konkurs
informatyczny „Bóbr”

•	 Roboty i gry edukacyjne

•	 Rozwijanie różnych zainteresowań
uczniów

VII.1.1

VII.1.2

VII.1.3

VII.2.1

1, 2, 3, 5 2

3

1

6.	 Podsumowanie 2

•	 Scenariusze zajęć edukacyjnych
uwzględniających edukację informatyczną

•	 Najważniejsze umiejętności do zdobycia
na pierwszym etapie edukacyjnym

•	 Wsparcie dla nauczycieli – gdzie szukać
inspiracji i pomocy?

VII 1–6 1

0,5

0,5

10

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Omówienie poszczególnych tematów

1.	 Wprowadzenie

1.1.	Organizacja szkolenia

Szkolenie rozpoczyna się od omówienia kwestii organizacyjnych oraz
przedstawienia celów szkolenia i poruszanych tematów. Uczestnicy szkolenia
powinni się przedstawić i krótko opowiedzieć o swojej pracy (w jakim wieku
są ich uczniowie; w jakim charakterze pracują – np. nauczyciel edukacji
wczesnoszkolnej, nauczyciel świetlicy, nauczyciel informatyki itd.; jakie
warunki techniczne mają w placówkach do przeprowadzenia zajęć z edukacji
informatycznej – np. klasa z komputerem oraz tablicą interaktywną, dostęp
do pracowni komputerowej raz w tygodniu, pracownia mobilna, tablety itp.). Jest
to cenna wiedza zarówno dla osoby prowadzącej szkolenie, jak i dla pozostałych
uczestników szkolenia.

1.2.	Dlaczego warto uczyć się programowania?

Podstawa programowa edukacji informatycznej dla pierwszego etapu edukacyjnego

Wygłoszony zostaje wykład zatytułowany: Dlaczego warto uczyć się
programowania?, podczas którego należy m.in. przytoczyć fragmenty podstawy
programowej dotyczące założeń kształcenia ogólnego w szkole podstawowej
w odniesieniu do nauczania informatyki oraz omówić treści nauczania
(wymagania szczegółowe) edukacji informatycznej dla pierwszego etapu
edukacyjnego. Uczestnicy szkolenia powinni otrzymać wydruk stosownych
fragmentów rozporządzenia (lub mieć dostęp do wersji elektronicznej
fragmentów rozporządzenia).

Zasoby do wykorzystania:
¨¨ Rozmowa z prof. Mitchem Resnickiem z Massachusetts Institute

of Technology (MIT) na temat potrzeby kształcenia innowacyjnych
i kreatywnych osób;

¨¨ Wystąpienie prof. Mitcha Resnicka pt. Nauczmy dzieciaki kodować.

https://www.youtube.com/embed/sTXa7QUYxaI?rel=0
https://www.youtube.com/embed/sTXa7QUYxaI?rel=0
https://www.ted.com/talks/mitch_resnick_let_s_teach_kids_to_code?language=pl#t-535610

11

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

1.3.	Jak prowadzić zajęcia z najmłodszymi

Po wykładzie powinna nastąpić dyskusja dotycząca wyzwań związanych
z realizacją podstawy programowej oraz kwestii prowadzenia zajęć z dziećmi
w klasach 1–3. Należy odwołać się do doświadczeń nauczycieli i ich propozycji
w tej materii (prowadzący szkolenie powinien notować pomysły na tablicy).

Wnioski, które powinny pojawić się po dyskusji:
•	 nauka programowania powinna odbywać się interdyscyplinarnie

(w połączeniu z innymi rodzajami edukacji, należy wykorzystywać
nauczanie STEAM – ang. Science, Technology, Engineering, Art
i Mathematics – nauki ścisłe, technologia, inżynieria, sztuka i matematyka);

•	 rozwiązywanie zadań, zagadek i łamigłówek prowadzących do odkrywania
algorytmów powinno odbywać się także bez użycia technologii
(w formie zabaw i gier bez wykorzystania komputera i innych urządzeń
cyfrowych – „informatyka bez komputera”);

•	 zajęcia można prowadzić w różnych wariantach: w sali lekcyjnej
z wykorzystaniem pracowni mobilnej, tabletów, używając własnego
sprzętu (idea BYOD – ang. Bring Your Own Device – przynieś swe własne
urządzenie), komputera i tablicy interaktywnej, laptopa oraz rzutnika
w pracowni komputerowej;

•	 na zajęciach edukacji informatycznej można wykorzystać gry planszowe
lub roboty;

•	 w sieci dostępnych jest wiele środowisk i aplikacji wspierających naukę
programowania najmłodszych.

Zasoby do wykorzystania:
¨¨ Projekt „Zakazane piosenki” SP w Ząbkach;
¨¨ Pomysł na lekcje programowania: Lekcje programowania – część 1

i Lekcje programowania – część 2;
¨¨ Środowisko ScratchJr.

2.	 Rozwijanie myślenia algorytmicznego

2.1.	Informatyka bez komputera

Można uczyć o informatyce – jej pojęciach i metodach – bez komputera, również
poza pracownią komputerową. Ideę tę rozwinął Tim Bell z Nowej Zelandii. Takie
podejście jest niezmiernie ważne podczas pracy z najmłodszymi dziećmi. Wiele zajęć

http://webcache.googleusercontent.com/search?q=cache:http://modelnowoczesnejszkoly2017.sp3zabki.pl/ramy-projektu-interdyscyplinarnego-p-t-zakazane-piosenki/
https://www.wsip.pl/e-spotkania/lekcje-programowania
https://www.wsip.pl/e-spotkania/lekcje-programowania-czesc-2
https://www.scratchjr.org/

12

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

edukacji informatycznej powinno odbywać się w tej formie. Uczestnikom szkolenia
należy zaprezentować przykłady filmów, w których uczniowie poznają zagadnienia
informatyczne bez użycia komputera (Projekt „Computer Science Unplugged”) oraz
zawartość strony projektu „Informatyka dla Jasia i Joasi” propagującego to podejście.
Z uczestnikami szkolenia należy zrealizować temat Zliczanie kropek – system binarny
(http://jasijoasia.edu.pl/csu1.pdf) według podanego scenariusza.

Zasoby do wykorzystania:
¨¨ Film wprowadzający do projektu „Computer Science Unplugged”;
¨¨ Film ilustrujący algorytmy sortowania;
¨¨ Film ilustrujący „grę w pomarańczę”;
¨¨ Strona projektu „Informatyka dla Jasia i Joasi”: http://jasijoasia.edu.pl;
¨¨ Strona Ośrodka Edukacji Informatycznej i Zastosowania Komputerów:

http://programowanie.oeiizk.edu.pl/,
(sekcja „Informatyka /prawie/ bez komputera”).

Wymienione powyżej filmy w serwisie YouTube są dostępne w angielskiej wersji
językowej, więc warto włączyć polskie napisy.

2.2.	Międzynarodowy Konkurs Informatyczny „Bóbr”

Głównym celem konkursu informatycznego „Bóbr” jest rozwijanie i kształtowanie
myślenia algorytmicznego i komputacyjnego oraz popularyzacja posługiwania się
technologią informacyjną i komunikacyjną wśród uczniów na wszystkich etapach
edukacyjnych. Konkurs ma zasięg międzynarodowy i obejmuje cztery poziomy
edukacyjne. Dla uczniów z klas 1–3 dedykowana jest kategoria Skrzat. Na stronie
konkursu znajdują się zadania archiwalne w wersji konkursowej wraz z niezwykle
cennym omówieniem (prawidłowa odpowiedź, ewentualnie uzasadnienie
i komentarz), co może ułatwić pracę słuchaczy i być dla nich inspiracją. Warto
wybrać kilka przykładowych zadań konkursu i omówić je z uczestnikami szkolenia.

Banner Międzynarodowego Konkursu Informatycznego „Bóbr”:

https://www.youtube.com/watch?v=voqghyZbZxo
https://www.youtube.com/watch?v=cVMKXKoGu_Y
https://www.youtube.com/watch?v=WforXEBMm5k

13

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Przykładowe zadanie za 4 punkty, listopad 2016 r.:

Zasoby do wykorzystania:
¨¨ Strona internetowa konkursu „Bóbr”: https://www.bobr.edu.pl/.

2.3.	Gry i zabawy bez komputera

Zajęcia należy podzielić na trzy części. W pierwszej z nich nauczyciele wykonują
kolejne zadania algorytmiczne bez użycia komputera. Proponujemy zadania
z wykorzystaniem szyfrowania (np. z wykorzystaniem dedykowanego zuchom
szyfru GA-DE-RY-PO-LU-KI, szyfru opartego na tablicy kodów lub szyfru
obrazkowego – przykładowe zadania 1–3).

Druga część zajęć, prowadzona w grupach 2–3 osobowych, polega
na opracowaniu przez uczestników planu zajęć i kart pracy wraz z instrukcją
do wykonania. Prowadzący zajęcia czynnie wspiera nauczycieli w realizacji
zadania. Nauczyciele podczas pracy mogą korzystać z zasobów internetu w celu
wyszukania wartościowych propozycji (np. ze strony konkursu „Bóbr”) lub
odwoływać się do własnych doświadczeń z tego zakresu.

14

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Ostatnia część zajęć poświęcona jest prezentacji przygotowanych materiałów
ze szczególnym uwzględnieniem kontekstu ich wykorzystania (np. odgadnięcie
zaszyfrowanych wyrazów może stanowić wstęp do lekcji o darach jesieni lub
zostać wykorzystane w ramach edukacji polonistycznej do odgadywania imion
bohaterów baśni). W ten sposób nauczyciele stworzą bank gotowych pomysłów
do realizacji z dziećmi.

Zasoby do wykorzystania:
¨¨ Strona prezentująca szyfry harcerskie;
¨¨ Scenariusz zajęć na temat programowania bez komputera „Kodujemy

kolorowo”;
¨¨ Bank pomysłów: http://koduj.gov.pl/.

2.4.	Projekt „Godzina Kodowania”

Przybliżamy uczestnikom szkolenia projekt „Godzina Kodowania”, organizowany
w ramach „Tygodnia Edukacji Informatycznej” (Computer Science Education
Week, USA). Jest to inicjatywa adresowana do uczniów z całego świata. Można
w niej uczestniczyć przez cały rok – zarówno w szkole, jak i w domu, wystarczy
mieć dostęp do internetu. W ramach szkolenia należy omówić i zrealizować ze
słuchaczami wybrane aktywności dedykowane dzieciom w wieku 6–8 lat –
Kurs 1, oraz dzieciom w wieku 8–10 lat (czytającym) – Kurs 2 (https://code.org/).
Należy przed zajęciami założyć sekcje dla nauczycieli (loginy obrazkowe – Kurs 1,
oraz loginy słowne – Kurs 2) i rozdać indywidualne karty z informacjami na temat
zasad logowania wygenerowane przez system. Pozwoli to na pełne utożsamienie
się uczestników szkolenia z rolą uczniów.

Przykładowa karta (Login obrazkowy):

http://www.szyfry.matw.pl/
http://www.oswajamyprogramowanie.edu.pl/2017/10/kodujemy-kolorowo-offlineowo.html
http://www.oswajamyprogramowanie.edu.pl/2017/10/kodujemy-kolorowo-offlineowo.html
http://koduj.gov.pl/

15

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Przykładowa karta (Login słowny):

Podczas indywidualnej pracy uczestników, trwającej około dwóch godzin, należy
monitorować na bieżąco ich postępy i wspierać w pokonywaniu trudności.
Problematyczne zadania trzeba omówić na forum (może to zrobić chętny słuchacz).
Mile widziana jest pomoc koleżeńska. Po zakończeniu ćwiczeń należy pokusić się
o refleksje związane z taką formą aktywności i stylem prowadzenia zajęć.

Spostrzeżenia, które powinny pojawić się w trakcie dyskusji:
•	 uczestnictwo w „Godzinie Kodowania” młodszych dzieci nie wymaga

zakładania konta na portalu https://code.org/;
•	 ćwiczenia są dostosowanie do poziomu uczniów, ułożone zgodnie z ideą

stopniowania trudności;
•	 dzieci stopniowo zaznajamiają się z kolejnymi zagadnieniami związanymi

z programowaniem wizualnym i wprowadzane są w świat programowania
poprzez zabawę;

•	 do ćwiczeń zostały opracowane filmy instruktażowe wspomagające naukę;
•	 ćwiczenia interaktywne są sprawdzane automatycznie – uczniowie

natychmiast otrzymują informację zwrotną;
•	 w razie niepowodzenia można ponownie rozwiązać zadanie;
•	 niektóre zadania mogą być wykonane poprawnie na wiele sposobów (mniej

lub bardziej optymalnie);
•	 zadania uczą porządkowania, rozumienia stosunków przestrzennych,

układania sekwencji poleceń, testowania i poprawiania fragmentów kodu
(debugowania), powtarzania poleceń, podejmowania decyzji;

•	 mnogość zadań pozwala na indywidualizację procesu nauczania oraz
wykorzystanie materiałów z projektu „Godzina Kodowania” na różnych
poziomach;

•	 wśród ćwiczeń występują aktywności niewymagające użycia komputera
(unplugged).

16

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Ostatnią część zajęć należy poświęcić na szczegółowe omówienie zawartej
w projekcie procedury tworzenia i modyfikowania klas oraz sposobu śledzenia
postępów uczniów. Do omówienia tego ostatniego zagadnienia można
wykorzystać dane wypracowane przez uczestników szkolenia. Zaleca się, aby
w praktyce przećwiczyli oni prezentowane treści, co wiąże się z koniecznością
założenia kont nauczycielskich na platformie https://code.org/, utworzenia sekcji
dla uczniów oraz wygenerowania kart z informacjami o logowaniu.

Zasoby do wykorzystania:
¨¨ Strona projektu „Godzina Kodowania”: http://godzinakodowania.pl/;
¨¨ Strona platformy: https://code.org/;
¨¨ Strona OEIiZK – instrukcja dla nauczyciela:

http://programowanie.oeiizk.edu.pl/,
(sekcja „Polecamy/Godzina Kodowania”).

3.	 Programowanie w ScratchJr

3.1.	Pierwsze kroki w ScratchJr

ScratchJr to środowisko programowania wizualnego dogodne dla najmłodszych
dzieci, które jeszcze nie opanowały umiejętności czytania. Środowisko działa
na urządzeniach iPad oraz na tabletach z systemem Android czy Google
Chrome (7-calowych lub większych). Na stronie https://www.scratchjr.org/
(dostępnej w języku angielskim) znajduje się szczegółowy opis środowiska oraz
materiały instruktażowe i metodyczne dla nauczycieli. Zaleca się, żeby czynności
wymagające użycia urządzeń mobilnych poprzedzać aktywnościami unplugged.
Do tego celu warto przygotować komplet wydrukowanych bloków środowiska
(materiał dostępny w postaci pliku pdf na stronie https://www.scratchjr.org/).

Uwaga: istnieje możliwość zainstalowania środowiska ScratchJr na komputerach
stacjonarnych z wykorzystaniem emulatora Androida.

Zasoby do wykorzystania:
¨¨ Strona domowa Scratch: https://www.scratchjr.org/;
¨¨ Bloki ScratchJr.

3.2.	Przygotowujemy opowiadania multimedialne

Uczestnicy szkolenia powinni mieć możliwość praktycznego zapoznania się ze
środowiskiem (mogą pracować w parach). Należy wykonać kilka prostych ćwiczeń

https://www.scratchjr.org/pdfs/blocks.pdf

17

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

wprowadzających, a następnie przejść do realizacji projektu multimedialnego
(przykładowe zadanie 4). W sieci jest dostępnych wiele ciekawych scenariuszy.

Zasoby do wykorzystania:
¨¨ Karty pracy w ScratchJr;
¨¨ Scenariusze z projektu „Mistrzowie Kodowania”;
¨¨ Scenariusze ze strony Super Koderzy.

3.3.	Podsumowanie – giełda pomysłów

Na zakończenie należy przeprowadzić dyskusję dotyczącą tego, jakie tematy
z zakresu edukacji wczesnoszkolnej (nie informatycznej) mogą być wspierane
realizacją projektów w środowisku ScratchJr (np. pory roku, zwierzęta w zagrodzie,
kolory jesieni itp.). Dyskusja powinna być poprzedzona krótką pracą w parach.
Nauczyciele ponownie tworzą bank gotowych pomysłów do realizacji z dziećmi.

4.	 Programowanie w środowisku Scratch

4.1.	Pierwsze kroki w Scratchu

O ile ScratchJr jest środowiskiem przeznaczonym do pracy z urządzeniami
mobilnymi, to Scratch nie ma już takich ograniczeń. Zalecamy pracę w tym
środowisku z dziećmi, które umieją już czytać (pod koniec pierwszej klasy
lub w klasie drugiej). Wskazane jest wykonanie z dziećmi wybranych ćwiczeń
dostępnych w materiałach „Godziny Kodowania” w ramach zasobu Kurs 2.

Zajęcia z nauczycielami należy rozpocząć od prezentacji środowiska Scratch.
Wskazujemy wady i zalety pracy online i offline (m.in. ze względu na zalety pracy
w chmurze). Po utworzeniu i potwierdzeniu kont należy wykonać ćwiczenia
opisane w scenariuszu Pierwsze kroki w Scratchu. Można też na zajęciach
wykorzystać karty Scratcha.

Uwaga: pełna funkcjonalność środowiska w wersji online wiąże się
z koniecznością posiadania konta pocztowego. Problem stanowi zatem
wiek uczniów szkoły podstawowej – dzieci te są zbyt małe, aby posiadać
konto pocztowe i swobodnie się nim posługiwać. Dlatego proponowanym
rozwiązaniem jest ścisła współpraca z rodzicami w celu założenia dziecku
konta na portalu https://scratch.mit.edu/. Warto rodzicom przedstawić walory
edukacyjne środowiska i zapewnić ich, że założenie konta nie wiąże się

https://www.scratchjr.org/teach/activities
http://wiki.mistrzowiekodowania.pl/index.php?title=Strona_g%C5%82%C3%B3wna
http://superkoderzy.pl/scenariusze-lekcji/najmlodsi-programuja/

18

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

z otrzymywaniem niechcianej korespondencji (tzw. spamu). Na adres podany
w procesie rejestracji przyjdzie link aktywacyjny potrzebny do uzyskania pełnej
funkcjonalności konta.

Zasoby do wykorzystania:
¨¨ Strona OEIiZK – opis środowiska Scratch i „Słowniczek bloczków”,

(sekcja „Warszawa programuje!”);
¨¨ Strona OEIiZK – scenariusz ćwiczeń Pierwsze kroki w Scratchu,

(sekcja „Mistrzowie Kodowania”);
¨¨ Zabawy tematyczne Karty Scratch.

4.2.	Opowiadania multimedialne

Uczestnicy szkolenia mają już wprawę w realizowaniu projektów w środowisku
ScratchJr. Należy ponownie podkreślić, że dobór tematyki opowiadań
multimedialnych musi mieć na celu integrację programowania z pozostałymi
sferami edukacji. W proponowanym przykładzie wspieramy edukację
polonistyczną. Projekt „Dialog” cechuje prostota zastosowanych skryptów oraz
możliwość wizualizacji dowolnej rozmowy między duszkami. Dialog odbywa się
na zasadzie znanej dzieciom z życia codziennego – w momencie, gdy jedna osoba
mówi, druga cierpliwie czeka. Do przykładowej wizualizacji wybrany został
fragment wiersza pt. ZOO Jana Brzechwy.

Uwaga: Projekty realizowane w środowisku Scratch są często rozbudowane,
dlatego zaleca się ich wykonywanie krok po kroku i częste testowanie
poszczególnych fragmentów kodów.

Zasoby do wykorzystania:
¨¨ Strona OEIiZK – scenariusz 1: Dialog,

(sekcja „Warszawa programuje!”).

Druga część zajęć poświęcona jest multimediom. Kolejny projekt pozwala
w oparciu o proste przykłady zrozumieć ideę nadawania i odbierania
komunikatów. Wykorzystanie bloczków związanych z dźwiękami zwiększa
jego atrakcyjność. Na scenie pojawiają się kolejno duszki: kot spacerujący
w rytm znanej piosenki Wlazł kotek na płotek, werbel symulujący grę na różnych
instrumentach, szczekający pies. Zastosowane efekty mają na celu pokazanie
możliwości dźwiękowych środowiska Scratch.

http://programowanie.oeiizk.edu.pl/#!/
http://programowanie.oeiizk.edu.pl
https://scratch.mit.edu/info/cards
http://programowanie.oeiizk.edu.pl/#!/

19

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Zasoby do wykorzystania:
¨¨ Strona OEIiZK – scenariusz 4: Opowiadanie multimedialne,

(sekcja „Warszawa programuje!”).

Podsumowaniem tej części zajęć powinna być kolejna giełda pomysłów na temat:
realizację jakich treści z podstawy programowej innych niż z zakresu edukacji
informatycznej wspiera Scratch? (np. edukację polonistyczną: czytanie, pisanie,
samokształcenie).

4.3.	Gry i zabawy edukacyjne

Projekty z tej grupy cechuje interakcja z użytkownikami. Stosuje się w nich
sterowanie klawiaturą lub myszką. Użytkownicy przygotowanej aplikacji nie są
wyłącznie biernymi obserwatorami, ale mają wpływ na to, co się dzieje na ekranie.
Projektowaniu i tworzeniu gier przez uczniów towarzyszy ogromne zaangażowanie.

Projekt „Zdrowe odżywianie” stanowi przykład wykorzystania prostego
sterowania. Użytkownik może kierować duszkiem za pomocą strzałek
klawiatury – żuczek obraca się w lewo lub prawo o 90° i porusza się naprzód.
Na scenie znajdują się także inne duszki (np. jabłko, ciastko) reprezentujące
zdrowe produkty oraz żywność tzw. śmieciową. Po dotknięciu danego obiektu
przez żuczka pojawia się̨ stosowny komunikat – w zależności od kategorii duszka,
który został dotknięty. „Zjedzone” przez żuczka produkty znikają ze sceny.

Należy zauważyć, że w prezentowanych scenariuszach znajdują się propozycje
modyfikacji i zadań do samodzielnego wykonania. Służą one indywidualizacji
procesu nauczania i mogą również zostać wykorzystane do pracy
z nauczycielami. Grupa uczestników szkolenia zapewne okaże się na tyle
zróżnicowana, że wiele z propozycji zostanie wykorzystanych.

Zasoby do wykorzystania:
¨¨ Strona OEIiZK – scenariusz 2: Zdrowe odżywianie,

(sekcja „Warszawa programuje!”).

„Akwarium” można zaliczyć do grupy projektów symulacyjnych, ponieważ
naśladuje zachowanie ryb, ale zawiera również elementy związane
z projektowaniem gier. Zakłada on interakcję z użytkownikiem oraz zliczanie
punktów. Ruch ryb pływających w akwarium sprawia wrażenie chaotycznego
i bezcelowego, ale gdy „pukamy w szybę” (oczywiście wirtualnie, używając

http://programowanie.oeiizk.edu.pl
http://programowanie.oeiizk.edu.pl/#!/

20

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

do tego celu myszki), zaciekawione zwierzęta poruszają się w stronę miejsca,
w które zapukano. W akwarium znajduje się też rybka drapieżna, która może
atakować inne. Powoduje to naturalną potrzebę wprowadzenia zmiennej
do zliczania zjedzonych rybek.

Zasoby do wykorzystania:
¨¨ Strona OEIiZK – scenariusz 3: Akwarium,

(sekcja „Warszawa programuje!”).

Ostatnim projektem będzie stworzenie aplikacji „Porządki” (przykładowy
scenariusz 1). Projekt ten stanowi kolejny sposób zintegrowania edukacji
przyrodniczej i informatycznej. Uczniowie tworzą w ramach jego działania
aplikację, w której uczą się sposobu segregowania odpadów, a przy okazji
programują wizualnie w środowisku Scratch codzienne czynności. Wykorzystamy
w niej instrukcję warunkową oraz nadawanie i odbieranie komunikatów.

4.4.	Symulacje

Symulacja to odtwarzanie pewnych sytuacji za pomocą modelu. Projekty
symulacyjne pozwalają na zrozumienie zjawisk występujących wokół nas.
Proponujemy zaprezentować nauczycielom na zajęciach dwa tego typu
projekty do wykorzystania na lekcjach edukacji wczesnoszkolnej: „Śluza
wodna” i „Elektrownia wiatrowa”. Nie są to projekty przeznaczone do realizacji
z dziećmi. Na zajęciach z nauczycielami należy zrealizować fragment drugiego
projektu – symulator wiatraka (przykładowy scenariusz 2), a na zakończenie tej
części zajęć – ostatni projekt „Kot i balony” (przykładowe zadanie 5). W tym
projekcie zostanie ponownie wykorzystane urządzenie zewnętrzne (mikrofon).

Zasoby do wykorzystania:
¨¨ Projekt „Śluza wodna”;
¨¨ Projekt „Elektrownia wiatrowa”.

4.5.	Jak wykorzystać Scratcha na zajęciach

Portal Scratch zawiera miliony projektów udostępnionych przez użytkowników
środowiska. Znajduje się tam wiele wartościowych pomysłów. Proponujemy
przejrzenie zasobów portalu https://scratch.mit.edu/ pod kątem poszukiwania
ciekawych projektów do wykorzystania na lekcjach edukacji wczesnoszkolnej.
Należy zwrócić uwagę nauczycielom na fakt, że do udostępniania

http://programowanie.oeiizk.edu.pl/#!/
https://scratch.mit.edu/projects/85845238/
https://scratch.mit.edu/projects/85857008

21

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

projektów konieczne jest posiadanie konta potwierdzonego w procesie
rejestracji – w przeciwnym wypadku użytkownik nie ma możliwości
dzielenia się swoimi pracami. Wskazane jest zademonstrowanie procesu
udostępniania projektu (kod embed i link do projektu). Omówienia wymaga
także sposób założenia studia przydatnego m.in. do gromadzenia prac
uczniowskich – tworzymy w ten sposób wirtualną ścianę z pracami dzieci.
Warto też przedstawić sposób i ideę opracowywania remiksów. Na koniec
każdy z nauczycieli powinien publicznie zaprezentować projekt, który znalazł,
i opowiedzieć o jego walorach edukacyjnych.

4.6.	Realizujemy własne pomysły – praca zespołowa

Gdy uczestnicy szkolenia mają już wprawę i pewne wyczucie związane
z programowaniem w Scratchu, proponujemy samodzielne wykonanie karty
okolicznościowej (przykładowe zadanie 6) oraz opracowanie i stworzenie
aplikacji wspierającej realizację wybranej lekcji z zakresu edukacji
wczesnoszkolnej (przykładowe zadanie 7). Podczas realizacji tego drugiego
zadania zalecana jest praca w zespołach dwuosobowych oparta na praktycznym
pokazie jednej z metod pracy z uczniami.

Nauczyciele muszą przejść wszystkie etapy tworzenia aplikacji:
•	 sprecyzowanie pomysłu,
•	 stworzenie planu działania (jakich elementów potrzebujemy, czy są

dostępne w bibliotece środowiska, co się będzie działo w aplikacji – jaki
będzie scenariusz gry),

•	 wykonanie aplikacji wraz z jej testowaniem krok po kroku.

W tworzonych aplikacjach nauczyciele powinni wykorzystać niektóre z wcześniej
poznanych mechanizmów interakcji z użytkownikiem (sterowanie klawiaturą,
przeciąganie duszków po ekranie, kliknięcie w duszka, sterowanie głosem).

4.7.	Podsumowanie – programowanie w środowisku wizualnym

Czas na podsumowanie programowania wizualnego. W czasie dyskusji należy
zwrócić uwagę nauczycieli na następujące kwestie:

•	 zanim zaczniemy programować wizualnie, programujemy w formie
zabawy – bez użycia komputera;

•	 naukę programowania warto zacząć od „Godziny Kodowania” – Kurs 1;

22

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

•	 w pracy z uczniami najmłodszymi wykorzystujemy środowisko ScratchJr,
mając na uwadze to, że edukacja informatyczna powinna wspierać inne
rodzaje edukacji w ramach kształcenia zintegrowanego;

•	 wstępem do kolejnego etapu może być ponownie „Godzina
Kodowania” – Kurs 2;

•	 programowanie wizualne w Scratchu zaczynamy od bardzo prostych
projektów, powoli stopniując skalę trudności;

•	 źródłami materiałów i inspiracji do pracy ze ScratchJr i Scratch mogą być
instrukcje pracy z programem, materiały dla nauczyciela, karty pracy, karty
Scratcha (bardzo krótkie projekty), projekty „Warszawa programuje!”,
„Godzina Kodowania” i program edukacyjny „Mistrzowie Kodowania”.

Należy także uwzględnić propozycje nauczycieli.

5.	 Praca z uczniami o różnych potrzebach edukacyjnych

5.1.	Praca z uczniem zdolnym, Międzynarodowy Konkurs
Informatyczny „Bóbr”

Uczestnikom szkolenia należy przedstawić szczegółowe informacje na temat
Konkursu Informatycznego „Bóbr”, w szczególności w kontekście pracy z uczniem
zdolnym (strona konkursu, regulamin i zasady organizacji). W pierwszej fazie
zajęć praktycznych nauczyciele rozwiązują samodzielnie zadania z roku 2016
lub 2015 (w wersji konkursowej). Druga część zajęć opiera się na wspólnym
omówieniu rozwiązań wybranych zadań. Zadania konkursowe polegają
na rozwiązywaniu różnorodnych problemów. Warto wybrać przynajmniej
po jednym (najciekawszym) zadaniu z kategorii takich jak:

•	 spostrzegawczość,
•	 analiza informacji,
•	 wybór obiektów ze względu na ich cechy charakterystyczne,
•	 układanie zdarzeń w logicznym porządku,
•	 odczytywanie zakodowanej informacji; odczytywanie informacji zgodnie

z przyjętym schematem,
•	 wykonywanie sekwencji poleceń sterowania robotem na ekranie

komputera,
•	 powtarzanie, łączenie pojedynczych czynności w sekwencję wydarzeń,

która później jest powtarzana,
•	 sortowanie,
•	 wyszukiwanie najmniejszej/największej wartości spełniającej podany warunek,

23

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

•	 zagadnienia grafowe,
•	 inne.

Zasoby do wykorzystania:
¨¨ Strona Konkursu Informatycznego „Bóbr”: https://www.bobr.edu.pl/.

5.2.	Roboty i gry edukacyjne

Wiele ciekawych i atrakcyjnych zajęć można przeprowadzić na poziomie klas
1–3 z wykorzystaniem robotów. Sterować robotami przeznaczonymi dla uczniów
najmłodszych (np. Ozobot, WeDo, Dash&Dot, Photon, mBot) można za pomocą
dedykowanych aplikacji lub programowania wizualnego. Na szkoleniu należy
wspomnieć także o grach edukacyjnych, np. CodyRoby. Warto zaprezentować
„na żywo” działanie tej gry (instrukcja i akcesoria do gry dostępnie na stronie
http://koduj.gov.pl/). Następnie uczestnicy szkolenia, podzieleni na zespoły
2–3 osobowe, przygotowują i prezentują krótkie recenzje wybranej gry lub
robota, uwzględniając dostępność oraz wartość materiałów metodycznych dla
nauczyciela. Tę ostatnią aktywność zalecamy zastąpić rzeczywistym testowaniem
pomocy dydaktycznych posiadanych przez placówkę organizującą szkolenie
(robot, gra planszowa) i dyskusją o ich użyteczności.

Zasoby do wykorzystania:
¨¨ Strona Kodable (gra bezpłatna w wersji podstawowej);
¨¨ Gry do nauki programowania Blockly Games;
¨¨ Strona edukacyjna Trasa Świętego Mikołaja;
¨¨ Gra Run Marco;
¨¨ CodyRoby – karciana gra do nauki programowania:

http://koduj.gov.pl/cody-roby-kodowanie-w-formie-gry-karcianej/;
¨¨ Program Lightbot.

Fakultatywnie na zajęciach można wykorzystać roboty i planszowe gry edukacyjne.
Poniżej linki do najbardziej popularnych – znajdziemy tam także scenariusze zajęć:

¨¨ Robot Ozobot – informacje;
¨¨ Zestawy Lego WeDo;
¨¨ Bloki Scratcha w integracji z Lego WeDo;
¨¨ Strona producenta Lego WeDo;
¨¨ Scenariusze lekcji z wykorzystaniem robotów Dash i Dot;
¨¨ Robot Photon – informacje;
¨¨ Robot mBot – informacje;
¨¨ Gra Scottie Go!.

https://game.kodable.com/
https://blockly-games.appspot.com/?lang=pl
https://santatracker.google.com/village.html
https://www.allcancode.com/runmarco
http://lightbot.com/flash.html
https://www.edu-sense.com/pl/
https://www.akcesedukacja.pl/lego-wedo-2-0/
https://scratch.mit.edu/wedo
https://education.lego.com/en-us/downloads/wedo-2/software
http://nauczyciele.makewonder.pl/scenariusze-lekcji.html
https://photonrobot.com/pl/robot/
http://trobot.pl
https://scottiego.pl/

24

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Należy zwrócić uwagę, że wymogi podstawy programowej można zrealizować
bez wykorzystania robotów, które jednak wzbogacają i uatrakcyjniają zajęcia.
Warto zatem wykorzystać sprzęt, którym dysponujemy, lub zakupić go, jeśli
placówka ma taką możliwość.

5.3.	Rozwijanie różnych zainteresowań uczniów

Ostatnią część zajęć proponujemy poświęcić na przygotowanie indywidualnej
ścieżki rozwoju ucznia (np. szczególnie uzdolnionego lub zaniedbanego
środowiskowo). Nauczyciele mogą pracować w parach. Opracowanie powinno
zawierać krótką charakterystykę ucznia (jego deficytów lub uzdolnień) oraz
propozycję zadań i aktywności stawianych przed nim. Jako alternatywne
zadanie można zaproponować przygotowanie planu zajęć pozalekcyjnych
(np. z algorytmiki i programowania dla najmłodszych, robotyki, gier i zabaw
logicznych, projekt grupowy do wykonania itp.). Uczestnicy szkolenia powinni
zaprezentować swoje propozycje.

6.	 Podsumowanie

6.1.	Scenariusze zajęć edukacyjnych uwzględniających
edukację informatyczną

Jedną z form podsumowania szkolenia może być opracowanie konspektu zajęć
z zakresu edukacji wczesnoszkolnej wspieranych edukacją informatyczną. Ważne,
aby zajęcia nie były dedykowane wyłącznie zagadnieniom informatycznym.
Konspekt musi zawierać treści z podstawy programowej, zarysowane działania,
aktywności podejmowane podczas lekcji. Praca nad konspektem powinna
odbywać się w zespołach 2–3 osobowych i zakończyć się prezentacją propozycji.

Zasoby do wykorzystania:
¨¨ Scenariusz Poznajmy język robotów (edukacja polonistyczna, plastyczna,

społeczna i matematyczna);
¨¨ Gra Code Grid Math (edukacja matematyczna);
¨¨ Strona projektu „Mistrzowie kodowania” (różne dziedziny edukacji).

6.2.	Najważniejsze umiejętności do zdobycia na pierwszym
etapie edukacyjnym

W formie dyskusji należy przypomnieć kompetencje konieczne do zdobycia
na pierwszym etapie edukacyjnym, takie jak umiejętność:

http://superkoderzy.pl/scenariusze-lekcji/najmlodsi-programuja
https://www.digipuzzle.net/minigames/codegrid/codegrid_math_till_ten.htm?language=english&linkback=..%2F..%2Feducation%2Fmath-till-10%2Findex.htm
http://wiki.mistrzowiekodowania.pl/index.php?title=Strona_g%C5%82%C3%B3wna

25

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

•	 logicznego i algorytmicznego myślenia (rozwijanego poprzez gry i zabawy
oraz dostosowane do wieku uczniów narzędzia TIK);

•	 rozwiązywania zadań, zagadek i łamigłówek prowadzących do odkrywania
algorytmów;

•	 rozwiązywania problemów wymagających tworzenia sekwencji poleceń
mających posłużyć realizacji planu działania prowadzącego do osiągnięcia
określonego celu;

•	 sterowania obiektem za pomocą pojedynczych poleceń i ich sekwencji;
•	 wizualnego opracowywania prostych sytuacji lub historyjek

z uwzględnieniem pracy grupowej;
•	 zapisywania efektów własnej pracy.

Uczniowie powinni umieć zastosować informatyczne podejście do rozwiązywania
problemu:

•	 sprecyzować cel (np. stworzenie multimedialnej kartki dla mamy);
•	 opracować rozwiązanie (np. stworzyć plan działania: jakich elementów

potrzebujemy, co się będzie działo na ekranie, jaki będzie scenariusz);
•	 zaprogramować rozwiązanie i je przetestować (np. wykonać aplikację

w środowisku Scratch i sprawdzić jej działanie krok po kroku).

Każdy z powyższych punktów należy szczegółowo omówić, przytaczając
przykłady zadań i narzędzi oraz aplikacji potrzebnych do ich zrealizowania
na zajęciach edukacji wczesnoszkolnej. Wszystkie pomysły powinny zostać
zanotowane na tablicy przez osobę prowadzącą szkolenie.

6.3.	Wsparcie dla nauczycieli – gdzie szukać inspiracji i pomocy?

Na koniec warto przeprowadzić dyskusję dotyczącą ciekawych projektów i inicjatyw
edukacyjnych skierowanych do najmłodszych, odwołując się do doświadczeń
i wiedzy nauczycieli (lokalne konkursy, serwisy ze scenariuszami zajęć, projekty
regionalne, ogólnopolskie i międzynarodowe itp.). Można też przypomnieć adresy
wszystkich najważniejszych stron odwiedzonych podczas szkolenia:

¨¨ https://code.org/;
¨¨ http://koduj.gov.pl/;
¨¨ https://www.scratchjr.org/;
¨¨ https://scratch.mit.edu/;
¨¨ http://programowanie.oeiizk.edu.pl;
¨¨ http://wiki.mistrzowiekodowania.pl;
¨¨ https://www.bobr.edu.pl.

26

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Przykładowe scenariusze zajęć

Scenariusz 1 – Porządki

Opis zajęć

Projekt „Porządki” adresowany do uczniów klasy 2 lub 3 to sposób
na zintegrowanie edukacji przyrodniczej i informatycznej. Uczniowie tworzą
aplikację, dzięki której uczą się sposobu segregowania odpadów, a przy okazji
programują wizualnie codzienne czynności w środowisku Scratch. Wykorzystujemy
w niej instrukcję warunkową oraz nadawanie i odbieranie komunikatów.

Czas trwania

45 minut

Niezbędne zasoby

Wykorzystujemy tło minimum dwukolorowe o rozmiarze 480x360 pikseli o barwach
odpowiadających kolorom pojemników do segregowania odpadów (niebieski,
zielony, żółty, brązowy). W przykładowym projekcie zastosowano trzy kolory.
Dodatkowo kolorowe pola podpisano nazwami segregowanych odpadów. Tło można
narysować w edytorze grafiki środowiska Scratch lub przygotować w innym edytorze
grafiki. Postaci duszków – pliki graficzne (svg lub png) –pobieramy z internetu
(https://openclipart.org/).

Realizacja

Projekt przygotujemy etapami:
•	 1. etap – przygotowanie tła i duszków z opcją przeciągania po ekranie;

Rysunek 1. Projekt „Porządki”

27

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

•	 2. etap – sprawdzanie, czy segregowane obiekty znajdują się
na właściwych polach;

•	 3. etap – dodanie zmiennych umożliwiających zliczanie odpadów
poprawnie i błędnie posegregowanych.

Część 1 – dodajemy grafikę do projektu

Pierwszy etap projektu polega na zmianie tła oraz wczytaniu postaci duszków.
Tło do projektu wczytujemy z pliku lub samodzielnie malujemy z wykorzystaniem
edytora grafiki środowiska Scratch. Ta druga opcja wydłuży czas realizacji projektu.
Postaci duszków wczytujemy z plików. Ze względu na to, że nazwa pliku staje się
nazwą duszka, należy zadbać o jej adekwatność (np. butelka.png, słoik.png,
papier.svg itp.).

Realizacja projektu polega na segregowaniu duszków symbolizujących różne
rodzaje odpadów. Działanie odbywa się z użyciem techniki: przeciągnij i upuść.
Standardowo w odtwarzaczu opcja przeciągania nie działa. W projekcie musimy
to zmienić, zaznaczając właściwą opcję we właściwościach duszka.

Po pierwszym etapie projekt posiada już funkcjonalność, którą można
wykorzystać na zajęciach z uczniami. Mając do dyspozycji tablicę interaktywną,
w ciekawy sposób możemy omówić z dziećmi zasady segregowania śmieci oraz
przyporządkować kolorom pojemników składowane w nich odpady.

Część 2 – tworzymy skrypty

Drugi etap projektu umożliwia automatyczne sprawdzenie, czy odpady zostały
posegregowane prawidłowo. Dzięki temu aplikacja zyskuje na atrakcyjności.
W projekcie został wykorzystany duszek-przycisk (Button2) z biblioteki środowiska
Scratch. Korzystając z edytora grafiki, na przycisku umieszczamy napis: sprawdź.

Rysunek 2. Zmiana ustawień duszka – przeciąganie w odtwarzaczu

28

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Sprawdzenie prawidłowości ułożenia odpadów realizowane jest poprzez nadawanie
i odbieranie komunikatów. Po kliknięciu w przycisk nadany zostaje do wszystkich
duszków komunikat o nazwie sprawdzenie. Po odebraniu komunikatu duszki
‍‑odpady sprawdzają, czy zostały umieszczone na obszarach o właściwych kolorach.

Musimy zadbać o to, aby wskazać kolor właściwy dla danego duszka
w czujniku dotyka koloru?.

Część 3 – testujemy i udoskonalamy projekt

Przystępując do wstępnego testowania projektu, należy sprawdzić położenie
duszków i pojawiające się komunikaty. W momencie gdy ta część projektu
zostanie poprawnie wykonana, możemy przystąpić do następnych czynności.

Kolejno wprowadzamy następujące poprawki:
•	 losowanie pozycji duszków-odpadów;

Projekt uruchamiamy skryptem zielonej flagi. Dbamy, aby duszki-odpady
zmieniały swoją pozycję podczas inicjacji projektu.

Rysunek 3. Skrypt przycisku

Rysunek 4. Skrypty duszków-odpadów

29

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

•	 ukrycie przycisku po jego kliknięciu;

Ukrywając duszka, należy pamiętać, aby pokazać go na początku w ramach
skryptu zielonej flagi.

Rysunek 5. Skrypty zielonej flagi duszków-odpadów

Rysunek 6. Modyfikacja skryptu przycisku

Rysunek 7. Skrypt zielonej flagi przycisku

30

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Część 4 – dodajemy nową funkcjonalność

Ostatni etap projektu ma fakultatywny charakter. Wykorzystujemy dwie
zmienne: do zliczania ustawień poprawnych oraz błędnych. Skrypt zerowania
zmiennych przypisać można różnym obiektom, np. przyciskowi.

Poprawki należy również wprowadzić w skryptach duszków-odpadów.

Podsumowanie

Podczas realizacji tego projektu omawiamy szereg zagadnień informatycznych.
Mamy tu do czynienia z jednoczesnym sterowaniem wieloma obiektami na ekranie,
instrukcją warunkową oraz zmiennymi. Projekt ten umożliwia wprowadzenie
trudnych zagadnień w przystępny sposób. Lepiej, by nie był to pierwszy projekt,

Rysunek 8. Modyfikacja skryptu zielonej flagi przycisku

Rysunek 9. Modyfikacja skryptów duszków-odpadów

31

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

w którym dzieci posługują się zmiennymi. Warto pojęcie zmiennej wprowadzić,
realizując uprzednio prostszy projekt, w którym występuje jeden licznik.

Projekt można poprzedzić zajęciami polegającymi na wyszukaniu grafiki.
Realizujemy w ten sposób kolejne treści z podstawy programowej.

Mając do dyspozycji tablicę interaktywną, można tego typu projekt tworzyć
i testować zespołowo. Korzystając z przedstawionego mechanizmu, możemy
porządkować różne elementy. W zależności od potrzeb związanych z realizacją
kolejnych treści edukacji wczesnoszkolnej mogą to być: owoce i warzywa,
zwierzęta i rośliny, figury geometryczne itd.

Proponowane modyfikacje i zadania do samodzielnego wykonania:
•	 wstawienie kolejnych duszków-odpadów;
•	 dodanie kolejnego koloru (brązowy – odpady biodegradowalne);
•	 znikanie duszków-odpadów poprawnie posegregowanych.

Scenariusz 2 – Wiatrak

Opis zajęć

Projekt „Wiatrak” adresowany do uczniów klasy 1 lub 2 integruje treści edukacji
matematycznej, przyrodniczej, plastycznej i informatycznej. Uczniowie, tworząc
symulator wiatraka, rozwijają ekspresję twórczą, rozumienie stosunków
przestrzennych oraz pojęć geometrycznych, w tym zagadnień związanych
z symetrią. Na podstawie obserwacji wyjaśniają istotę obserwowanego zjawiska
oraz potrafią je zaprogramować wizualnie.

Rysunek 10. Projekt „Wiatrak”

32

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Czas trwania

45 minut

Niezbędne zasoby

Jako elementy do tworzenia projektu uczniowie wykorzystują prace plastyczne
wykonane w edytorze graficznym Scratcha. Ewentualnie symulacja może zostać
wzbogacona o duszki pobrane z biblioteki (np. Tree1).

Realizacja

Projekt tworzymy etapami:
•	 1. etap – przygotowanie tła i duszków w edytorze graficznym;
•	 2. etap – wprawienie wiatraka w ruch;
•	 3. etap – modyfikacja skryptu sterującego wiatrakiem.

Część 1 – przygotowujemy grafikę do projektu

Pierwszy etap projektu polega na przygotowaniu grafiki w edytorze Scratcha.
Tło będzie stanowił rysunek budynku wiatraka oraz jego otoczenia.

Pozostałe elementy graficzne do wykorzystania w projekcie to: łopaty wiatraka,
słońce, drzewo itp.

Rysunek 11. Scena projektu „Wiatrak”

33

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Szczególną uwagę należy poświęcić tworzeniu łopat wiatraka. Zaczynamy od
narysowania pojedynczej łopaty, którą następnie powielamy i obracamy.
Miejsce połączenia wszystkich czterech elementów stanowi środek tego duszka.

Dodatkowym elementem symulacji może być „świecące” słońce. Do uzyskania
złudzenia ruchu promieni potrzebujemy dwóch kostiumów słońca nieznacznie
różniących się długością promieni.

Rysunek 14. Kostiumy duszka-słońce

Rysunek 13. Etapy tworzenia łopat wiatraka

Rysunek 12. Duszki projektu „Wiatrak”

34

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Część 2 – tworzymy skrypty

Drugi etap projektu związany jest z koniecznością utworzenia skryptów.
Zaczynamy od zaprojektowania animacji słońca, którą zrealizujemy poprzez
zmianę kostiumów.

Najważniejszy element symulacji stanowią obracające się łopaty wiatraka.

Warto zauważyć, że tym razem do animacji nie wykorzystujemy kolejno
wyświetlających się kostiumów, a obroty zaprojektowanego duszka.

Część 3 – testujemy i udoskonalamy projekt

Gdy uruchomimy skrypt zielonej flagi, łopaty wiatraka obracają się względem
środka kostiumu. Można ruch łopat spowolnić lub przyspieszyć, zmieniając
wartość kąta obrotu. Ręczna modyfikacja wartości w bloczku jest pracochłonna,
dlatego proponujemy wprowadzenie zmiennej, której wartość będzie wpływać
na szybkość obrotu łopat.

Rysunek 15. Skrypt zielonej flagi duszka-słońce

Rysunek 16. Skrypt zielonej flagi duszka-łopaty wiatraka

35

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Wyświetlając wartość zmiennej w postaci suwaka, zyskujemy interaktywność projektu.

Podczas uważnego testowania tego rozwiązania można spostrzec, że początkowo
łopaty obracają się zgodnie z założeniem: tym szybciej, im większa wartość została
wybrana na suwaku. Gdy przekroczymy pewną wartość, pojawia się jednak
problem: łopaty nagle zwalniają, czasem wydaje się, że obracają się w przeciwnym
kierunku, a dla wartości 90 nie obracają się wcale. To ostatnie zjawisko wynika
z nakładania się na siebie łopat przy obrocie o kąt 90 stopni. Aby temu zaradzić,
możemy zmienić zakres suwaka (opcja: ustaw min. i max. suwaka). Innym
rozwiązaniem jest użycie wyrażenia arytmetycznego (dzielenia).

Rysunek 17. Modyfikacja skryptu zielonej flagi duszka-łopaty wiatraka

Rysunek 18. Suwak

Rysunek 19. Modyfikacja skryptu zielonej flagi duszka-łopaty wiatraka

36

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Część 4 – dodajemy nową funkcjonalność

Ostatni etap projektu polega na wykorzystaniu czujnika „głośność”, dzięki
któremu symulacja staje się bardziej realistyczna.

By przetestować działanie zaprezentowanego powyżej skryptu, musimy mieć
do dyspozycji mikrofon. Ponadto, podczas uruchamiania skryptu zielonej flagi,
należy zezwolić w przeglądarce na użycie urządzenia zewnętrznego.

Podsumowanie

Realizując ten projekt, należy zwracać uwagę na treści z zakresu innych dziedzin
edukacji. Możemy z uczniami szukać na rysunkach figur geometrycznych,
analizować symetrię łopat, położenie poszczególnych elementów na scenie.
Dajemy szansę ujawnienia ekspresji twórczej poprzez kreowanie symboli
obiektów z ich otoczenia.

Proponowane modyfikacje i zadania do samodzielnego wykonania:
•	 na podstawie tego projektu można przygotować symulację jadącego

samochodu, w którym obracają się koła.

Zasoby do wykorzystania:
¨¨ Projekt „Wiatrak”.

Rysunek 20. Modyfikacja skryptu zielonej flagi duszka-łopaty wiatraka

https://scratch.mit.edu/projects/188318193/

37

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Przykładowe zadania

Zadanie 1: Szyfr GA-DE-RY-PO-LU-KI (bez użycia komputera)

GA-DE-RY-PO-LU-KI – to prosty szyfr stosowany przez harcerzy. Charakteryzuje
się tym, że w kluczu występuje sześć par liter. Każda z par składa się ze spółgłoski
i samogłoski. Szyfrowanie polega na zamianie liter w obrębie par. Litery
niewystępujące w kluczu (i spacje) nie są zamieniane. Np. dla klucza GA-DE-RY-
PO-LU-KI każdą literę G zamieniamy na A i odwrotnie (A na G), D na E, E na D,
itd. Napis: ALA MA KOTA po zaszyfrowaniu kluczem GA-DE-RY-PO-LU-KI ma
postać: GUG MG IPTG.

Inne popularne klucze to: MA-LI-NO-WE-BU-TY, MO-TY-LE-CU-DA-KI,
NO-WE-BU-TY-LI-SA, RE-GU-LA-MI-NO-WY, KO-NI-EC-MA-TU-RY.

Zaszyfruj napis: ZAPRASZAM DO WSPÓLNEJ ZABAWY W SZYFROWANIE
wybranym kluczem. Odszyfruj napis: ZCUHT SYMSCJĄ YLN RMAZDJ
SZTFRMWDNKD, wiedząc, że do szyfrowania użyto klucza MO-TY-LE-CU-DA-KI.

Na zajęciach z nauczycielami wybieramy dłuższe sekwencje do szyfrowania
i odszyfrowania. Zabawę z dziećmi zaczynamy od zaszyfrowania krótkich
wyrazów (np. imion). Warto przygotować pomoc w postaci sześciu kart dla
każdego klucza, po jednej literze z pary na stronę karty. Na przykład dla klucza
MA‍‑LI‍‑NO‍‑WE‍‑BU‍‑TY będą to karty: M (rewers) i A (awers), L (rewers) i I (awers),
N (rewers) i O (awers), W (rewers) i E (awers), B (rewers) i U (awers)
oraz T (rewers) i Y (awers). Szyfrowanie łączymy z odszyfrowaniem. Uczniowie
mogą pracować w parach według schematu: szyfrujemy wiadomość, przesyłamy
adresatowi, adresat odszyfrowuje wiadomość, nadawca sprawdza, czy
wiadomość została poprawnie odszyfrowana.

Propozycja innych tekstów do zaszyfrowania – dla nauczycieli i starszych
uczniów: HARCERSKI SZYFR DO SUPER TAJNYCH ZADAŃ, ZUCHY
I HARCERZE CHRONIĄ WIADOMOŚCI, PODMIENIAMY WYBRANE
LITERY W TEKŚCIE, KLUCZE SZYFRUJĄCE ŁATWE DO ZAPAMIĘTANIA,
KLUCZE SZYFRUJĄCE O DŁUGOŚCI DWANAŚCIE. Propozycja wyrazów
do zaszyfrowania przez dzieci: LATO, WIOSNA, PIES, KOT, ANIA, TOMEK itp.

38

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Zadanie 2: Szyfr z wykorzystaniem tablicy kodów
(bez użycia komputera)

Tekst jawny szyfrujemy z wykorzystaniem poniższej tablicy kodów. Kod znaku
to dwucyfrowa liczba – pierwsza cyfra znajduje się nad literą, druga po jej lewej
stronie. Np. napis: ALA MA KOTA po zaszyfrowaniu daje ciąg liczb:
12 36 12 90 76 12 90 16 18 98 12.

Zaszyfruj wyraz MATEMATYKA, korzystając z tablicy kodów i przekaż otrzymany
ciąg liczb innej osobie do odszyfrowania.

Uwaga: Tablica kodów może mieć różną zawartość, w zależności od zestawu liter
poddawanych szyfrowaniu. W powyższym przypadku występuje litera Ł, która
może być zastąpiona innym znakiem.

Zadanie 3: Szyfr obrazkowy (bez komputera)

Harcerski szyfr „Czekoladka” polega na rysowaniu kolejnych zaszyfrowanych
liter danego wyrazu. Aby zaszyfrować literę, rysujemy fragment ramki, w którym
ta litera jest zapisana, zgodnie z rysunkami poniżej. Ponieważ w jednej ramce
najczęściej znajdują się dwie litery, odpowiednio usytuowana kropka pokazuje,
czy mamy na myśli literę z lewej, czy z prawej strony danego fragmentu ramki.
Dla liter: T, U, W, Y i Z, które występują pojedynczo, rysowanie kropki jest zbędne.

Rysunek 22. Szyfr obrazkowy

Rysunek 21. Tablica kodów

39

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Odszyfruj zaszyfrowane wyrazy:

Odpowiedź: logo, szyba, tratwa.

Zadanie 4: Pory roku (projekt w środowisku ScratchJr)

Przygotuj projekt o nazwie „Pory roku” w środowisku ScratchJr. Animacja
powinna przedstawiać kolejno pory roku i bohatera – kota z domalowanymi
charakterystycznymi rekwizytami. Dla wiosny mogą to być np. bazie,
dla lata – czapka z daszkiem lub okulary słoneczne, dla jesieni – parasol,
a dla zimy – czapka i szalik.

Rysunek 23. Projekt „Pory roku”

40

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Bardzo prosty projekt, wykorzystujący sekwencję poleceń oraz dający
możliwość układania obrazków w logicznym porządku, może posłużyć jako
podsumowanie lekcji na temat pór roku lub opisywania pogody panującej
za oknem.

W projekcie wykorzystuje się tła z biblioteki przedstawiające pory roku oraz
standardowego duszka, któremu w edytorze graficznym dorysowano wybrane
rekwizyty. Uwaga: w środowisku ScratchJr można wstawić maksymalnie
cztery tła.

Dla poszczególnych duszków zdefiniowano następujące skrypty:

Rysunek 24. Skrypty duszków

41

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Alternatywnie, np. realizując projekt z dziećmi nieczytającymi, bloczek z dymkiem
można zastąpić bloczkami związanymi z ruchem.

Zadanie 5: Kot i balony (projekt w środowisku Scratch)

Przygotuj projekt „Kot i balony” w środowisku Scratch. Projekt powinien
opierać się na zabawie wymagającej interakcji z użytkownikiem. Podskakującym
kotem, który próbuje złapać balon unoszący się w powietrzu, sterujemy
za pomocą siły głosu. W zaawansowanej wersji projektu można dodać opcję
zliczania punktów oraz efekty kolorystyczne.

W projekcie wykorzystano tło z biblioteki (Stage2) oraz dwa duszki
(standardowy kot oraz Balloon1).

Rysunek 25. Projekt „Kot i balony”

Rysunek 26. Skrypty kota

42

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Rysunek 27. Skrypt balonu

Rysunek 28. Modyfikacja skryptu kota – wersja zaawansowana

43

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

W tym projekcie do sterowania wykorzystane zostało urządzenie zewnętrzne
(mikrofon). Uruchamiając aplikację należy zezwolić na jego użycie. Problemy,
zarówno wśród uczniów, jak i nauczycieli, może powodować umieszczanie
we właściwych miejscach czujników: „dotyka”, „głośność” oraz bloków
z kategorii: „wyrażenia”. Ze szczególną uwagą należy konstruować wyrażenie
-80+głośność*4. W zaawansowanej wersji projektu do zmiany wyglądu balonów
można również wykorzystać różne kostiumy duszka.

Zasoby do wykorzystania:
¨¨ Studio projektów OEIiZK: przykładowe projekty.

Zadanie 6: Kartka okolicznościowa (projekt w środowisku Scratch)

Realizacja projektu polega na zaprojektowaniu w środowisku Scratch kartki
okolicznościowej – na przykład z okazji Dnia Matki. Wykonany projekt powinien
mieć postać animacji, w której z rozsypanki literowej na tle serca tworzy się
tytułowy napis. Efekty wizualne mogą być dowolne.

Rysunek 29. Modyfikacja skryptu balonu – wersja zaawansowana

https://scratch.mit.edu/studios/4487110/

44

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

W projekcie wykorzystano tło z biblioteki (Hearts1) oraz siedem duszków
(są nimi wybrane litery typu Glow). Standardowe litery mają kolor niebieski.
Do ich pokolorowania użyto edytora graficznego Scratcha.

Wartości w polach x i y zależą od punktu umieszczenia duszka na scenie
i ustalają się automatycznie w bloczkach: „idź do” oraz „leć do” – umieszczonych
w zasobniku. Po ich przeniesieniu do sekcji tworzenia skryptów wszelkie
zmiany zawartości pól x i y muszą być dokonywane ręcznie, poprzez wpisanie
właściwych wartości. Dlatego warto realizację projektu podzielić na dwie fazy.

Rysunek 30. Projekt „Kartka okolicznościowa”

Rysunek 31. Przykładowy skrypt litery

45

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

W pierwszej z nich należy ustalić położenie liter na scenie (w rozsypance),
a następnie dla każdej z nich bloczek: „idź do” przenieść do sekcji tworzenia
skryptów. W drugiej fazie, po ustaleniu docelowego miejsca położenia liter
w wyrazach, należy powtórzyć operację przeniesienia bloczków do sekcji
tworzenia skryptów – ale tym razem dla bloczka: „leć do”. Ponadto w projekcie
dodano animację w postaci obrotu. Należy jednakże uwzględnić również inne
pomysły uczestników szkolenia.

Realizując ten projekt, trzeba zwrócić uwagę na kwestie związane
z umiejscowieniem duszków na scenie. Animację należy wykonywać
stopniowo, krok po kroku ją testując. Proponujemy zacząć pracę z uczniami od
zaprezentowania animacji jednej litery, bez wykorzystania pętli: „powtórz”.

Zasoby do wykorzystania:
¨¨ Przykładowy projekt „Dla Mamy”.

Zadanie 7: Realizujemy własne pomysły
(projekt w środowisku Scratch)

Zadanie polega na przygotowaniu scenariusza projektu/aplikacji, wspierającego
wybraną lekcję z zakresu edukacji wczesnoszkolnej, przewidzianego do realizacji
w środowisku Scratch. Można wzorować się na scenariuszu z projektu
„Opowiadanie multimedialne”. Następnie należy stworzyć projekt/aplikację
według przedstawionego pomysłu.

Podczas realizacji tego zadania zalecana jest praca w zespołach dwuosobowych,
która umożliwi praktyczny pokaz jednej z metod pracy z uczniami. Nauczyciele
muszą przejść wszystkie etapy tworzenia aplikacji:

•	 sprecyzowanie pomysłu;
•	 stworzenie planu działania (jakich elementów potrzebujemy, czy są one

dostępne w bibliotece środowiska, co się będzie działo w aplikacji – jaki
będzie scenariusz gry);

•	 wykonanie aplikacji oraz jej testowanie krok po kroku.

W tworzonych aplikacjach nauczyciele powinni wykorzystać niektóre
z wcześniej poznanych mechanizmów interakcji z użytkownikiem (sterowanie
klawiaturą, przeciąganie duszków po ekranie, kliknięcie w duszka, sterowanie
głosem). Na koniec powinni zweryfikować pierwotny scenariusz i uzupełnić go
o elementy, które wystąpiły w projekcie, a nie były zaplanowane.

https://scratch.mit.edu/projects/188249692/

46

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 1-3 (I ETAP EDUKACYJNY)

Lekcja z uczniami będzie przebiegać według odmiennego scenariusza.
Temat projektu powinien być ściśle związany z omawianymi treściami z zakresu
edukacji wczesnoszkolnej. Przygotowanie scenariusza może polegać na ułożeniu
w logicznym porządku zdarzeń/czynności, które są konieczne do wykonania
podczas jego realizacji. Po wspólnym ustaleniu zakresu działań uczniowie w parach
realizują projekt, a nauczyciel pełni rolę konsultanta i bacznego obserwatora.

Zasoby do wykorzystania:
¨¨ Studio projektów OEIiZK: przykładowe projekty.

https://scratch.mit.edu/studios/4488934/
https://scratch.mit.edu/studios/4488934/

47

Katarzyna Olędzka

Ramowy program szkolenia DLA NAUCZYCIELI
KLAS 4–6 (II ETAP EDUKACYJNY)

Informacje ogólne
Szkolenie jest przeznaczone dla nauczycieli informatyki nauczających lub
planujących nauczanie w szkołach podstawowych. Jego główny cel stanowi
przygotowanie nauczycieli do realizacji nowej podstawy programowej
przedmiotu informatyka w szkole podstawowej w zakresie algorytmicznego
rozwiązywania problemów oraz programowania na poziomie klas 4–6. Szkolenie
obejmuje 40 godzin lekcyjnych zajęć stacjonarnych. Nauczyciele mogą
kontynuować doskonalenie w trakcie drugiej części szkolenia przygotowującej
do realizacji podstawy programowej w klasach 7 i 8.

Zajęcia powinny mieć przede wszystkim charakter warsztatowy, uczestnicy
pod nadzorem prowadzącego samodzielnie rozwiązują problemy, wcielając się
w rolę ucznia. Część zajęć należy przeznaczyć na wykład i dyskusję oraz
omówienie zagadnień metodycznych. Praca praktyczna pozwoli słuchaczom
nabrać biegłości w posługiwaniu się narzędziami i metodami informatycznymi.
Niemniej ważna jest również refleksja pedagogiczna: w jakim celu wprowadzamy
dane zagadnienia, jak zorganizować proces dydaktyczny, na co szczególnie
zwrócić uwagę i jakie mogą wystąpić trudności. Podczas zajęć nie tylko
prowadzący dzielą się swoją wiedzą, ale także słuchacze wymieniają się
doświadczeniami.

Wymagania wstępne stawiane uczestnikom szkolenia
Uczestnik szkolenia powinien posiadać kompetencje wymienione w Załączniku 1,
a ponadto mieć uprawnienia do nauczania informatyki w szkole podstawowej.

48

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Cele szkolenia:
•	 przygotowanie nauczycieli do prowadzenia zajęć z informatyki zgodnie

z nową postawą programową w zakresie algorytmicznego rozwiązywania
problemów i programowania;

•	 doskonalenie własne nauczycieli w zakresie algorytmiki i programowania,
a także rozumienia pojęć informatycznych i metod informatyki;

•	 rozwijanie u uczniów umiejętności myślenia komputacyjnego
i rozwiązywania problemów z życia codziennego przy pomocy narzędzi
informatycznych;

•	 nabycie umiejętności programowania w języku wizualnym w zakresie
umożliwiającym realizację podstawy programowej przedmiotu informatyka
w klasach 4–6 szkoły podstawowej;

•	 wprowadzenie podstaw programowania w języku tekstowym.

Treści nauczania:
1.	 Rola algorytmicznego rozwiązywania problemów, myślenia komputacyjnego

i programowania w nowej podstawie programowej ze szczególnym
uwzględnieniem zapisów dotyczących jej realizacji w klasach 4–6.

2.	 Sterowanie obiektem za pomocą sekwencji poleceń, z nawiązaniem
do konkretnych form, metod i środków rozwijania u uczniów myślenia
komputacyjnego.

3.	 Wizualne programowanie prostych sytuacji lub historyjek
z wykorzystaniem poleceń sekwencyjnych, warunkowych i iteracyjnych
oraz zdarzeń.

4.	 Porządkowanie informacji.
5.	 Rozwiązywanie problemów z życia codziennego oraz innych dziedzin

wiedzy poprzez formułowanie i zapisywanie algorytmu.
6.	 Poszukiwanie w zbiorach nieuporządkowanych i uporządkowanych

konkretnego elementu oraz elementów najmniejszego i największego.
7.	 Kształtowanie zdolności algorytmicznego rozwiązywania problemów.

Wyróżnianie podstawowych kroków w procesie definiowania
i algorytmicznego rozwiązywania problemu oraz ich stosowanie w praktyce.

8.	 Wprowadzenie do tekstowego języka programowania wysokiego poziomu,
w szczególności do sterowania obiektem.

9.	 Wykorzystanie arkusza kalkulacyjnego do rozwiązywania zadań
algorytmicznych związanych z prostymi obliczeniami.

10.	 Testowanie, poprawianie i prezentowanie własnych programów.

49

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Przykładowy rozkład materiału:

Temat i temat cząstkowy
Punkt
podstawy
programowej

Treści Liczba
godzin

1.	 Wprowadzenie 2

•	 Organizacja szkolenia

•	 Dlaczego warto uczyć się programowania?
Podstawa programowa informatyki dla
drugiego etapu edukacyjnego

•	 Projekt „Godzina Kodowania”

całość 1, 2, 3 0,5

0,5

1

2.	 Rozwijanie myślenia algorytmicznego 8

•	 Projekt „Informatyka bez komputera”

•	 Konkurs Informatyczny „Bóbr”

•	 Zadania obliczeniowe

•	 Odkrywamy algorytmy

I.1, I.2a, I.2b,

I.3, II.3c

1, 3, 4, 5, 6,
7, 9

2

2

2

2

3.	 Programowanie w środowisku Scratch 14

•	 Pierwsze kroki w Scratchu

•	 Przygotowujemy opowiadania multimedialne

•	 Tworzymy własne gry

•	 Opracowujemy symulacje

•	 Rysujemy

•	 Implementujemy algorytmy obliczeniowe

•	 Podsumowanie – programowanie
w środowisku wizualnym

I.2, I.3, II.1,

II.2, II.4

1, 2, 3, 7, 10 1

3

3

2

2

2

1

4.	 Sterowanie obiektem za pomocą sekwencji poleceń 10

•	 Grafika żółwia w Pythonie – wprowadzenie

•	 Uczymy żółwia nowych słów

•	 Powtarzamy czynności

•	 Powtarzamy i podejmujemy decyzje

•	 Dzielimy problem na problemy cząstkowe

•	 Projektujemy posadzki

•	 Budujemy piramidy

I.2c, I.3, II.1,

II.2, II.3

1, 2, 7, 8, 10 1

1

1

1

1

1

1

50

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

•	 Rozwiązujemy zadania

•	 Sterujemy robotem

1

2

5.	 Praca z uczniami o różnych potrzebach edukacyjnych 5

•	 Praca z uczniem zdolnym

•	 Gry edukacyjne

•	 Rozwijanie różnych zainteresowań uczniów

I.1, I.2, I.3, II 1, 2, 3, 4, 5,
6, 7

2

2

1

6.	 Podsumowanie 1

•	 Najważniejsze umiejętności do zdobycia
na drugim etapie edukacyjnym: Co
uczniowie powinni umieć przed
przejściem do czwartej klasy? Czego będą
się uczyć się w klasach starszych?

•	 Zadania nauczyciela – jak radzić sobie
z trudnościami i gdzie szukać pomocy?

całość całość 0,5

0,5

Omówienie poszczególnych tematów

1.	 Wprowadzenie

Na początku szkolenia, oprócz omówienia zasad organizacji, warto przedstawić
uczestnikom tematykę. W tym celu należy przeprowadzić wykład ukazujący,
dlaczego warto nauczać programowania. Ponadto trzeba omówić poszczególne
zapisy dotyczące informatyki zawarte w nowej podstawie programowej, zarówno
w odniesieniu do założeń ogólnych programu, jak i do szczegółowych treści.
Szczególną uwagę należy poświęcić wskazaniom dotyczącym rozwiązywania
problemów i nauce programowania w klasach 4–6 oraz zastanowieniu się,
jakie umiejętności wynoszą uczniowie z edukacji informatycznej w nauczaniu
wczesnoszkolnym. Później może nastąpić dyskusja o zmianach, jakie niesie
nowa podstawa programowa, oraz o tym, jak wprowadzać je w życie. Można też
nawiązać do artykułów prof. Macieja M. Sysły Wprowadzając… porządek oraz
dr Anny Beaty Kwiatkowskiej W poszukiwaniu abstrakcyjnego modelu.

Zasoby do wykorzystania:
¨¨ Sysło M.M., (2016), Wprowadzając… porządek, Toruń: Informatyka w Edukacji;
¨¨ Kwiatkowska, A.B., (2016), W poszukiwaniu abstrakcyjnego modelu, Toruń:

Informatyka w Edukacji.

http://iwe.mat.umk.pl/archiwum/iwe2016//materials/II_Drukarnia_IwE/04.pdf
http://iwe.mat.umk.pl/archiwum/iwe2016//materials/II_Drukarnia_IwE/03.pdf
http://iwe.mat.umk.pl/archiwum/iwe2016//materials/II_Drukarnia_IwE/03.pdf

51

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Ostatnim celem do zrealizowania podczas pierwszej części szkolenia jest
zapoznanie uczestników z projektem „Godzina kodowania”
(http://godzinakodowania.pl/), organizowanym rokrocznie w ramach Tygodnia
Edukacji Informatycznej, stanowiącym ciekawą inicjatywę edukacyjną adresowaną
do uczniów z całego świata. Projekt ten cieszy się w Polsce dużą popularnością.
Można w nim uczestniczyć przez cały rok, zarówno w szkole, jak i w domu przez
internet. W ramach szkolenia zaleca się rozwiązanie kilku zadań z wybranego
kursu oraz przedstawienie narzędzi dostępnych dla nauczyciela (zakładanie
i administrowanie kontami uczniów, monitorowanie postępów uczniów).

Zasoby do wykorzystania:
¨¨ Strona projektu „Godzina kodowania”: http://godzinakodowania.pl/;
¨¨ Strona platformy: https://code.org;
¨¨ Strona OEIiZK – instrukcja dla nauczyciela: http://programowanie.oeiizk.edu.pl/,

(sekcja „Polecamy/Godzina Kodowania”).

2.	 Rozwijanie myślenia algorytmicznego

2.1.	Projekt „Informatyka bez komputera”

Zyskującym na popularności sposobem prezentowania zagadnień z zakresu
informatyki jest prowadzenie zajęć dydaktycznych bez komputera. Jak zauważył
Edsger Dijkstra: „informatyka ma tyle samo wspólnego z komputerami,
co astronomia ma z teleskopami”. Można uczyć o informatyce – jej pojęciach
i metodach – nie używając komputera, również poza pracownią komputerową.

Rysunek 1. Widok nauczyciela – postępy uczniów

52

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Ideę tę rozwinął Tim Bell z Nowej Zelandii. Uczniowie kształcą w ten sposób
umiejętność twórczego myślenia i poznają świat komputerów poprzez pojęcia
takie jak: liczby binarne, algorytm, program, sortowanie, kompresja, szyfrowanie
danych. Zajęcia prowadzone w ten sposób angażują uczniów także ruchowo.

Przykładowe tematy zajęć:

✔✔ Zliczanie kropek – system binarny

Ponieważ dane w komputerach są zapisywane jako ciągi zer i jedynek, warto
pokazać, w jaki sposób liczby mogą być reprezentowane przy pomocy zaledwie
dwóch symboli. Przygotowujemy kartki z kropkami, a następnie zadajemy
uczniom pobudzające do myślenia pytania dotyczące zapisu binarnego liczby.
Poprzez odsłanianie/zasłanianie odpowiednich kart możemy zamieniać zapis
dziesiętny na binarny i odwrotnie.

Wizualne reprezentacje liczb:

✔✔ Kolory jako liczby – kodowanie obrazu

Pokazujemy zapis obrazów za pomocą kodów liczbowych. Specjalnie przygotowane
karty pracy – dostępne na stronie http://programowanie.oeiizk.edu.pl w zakładce
„Informatyka /prawie/ bez komputera” – mogą w tym pomóc.

✔✔ Magia obracanych kart – wykrywanie i korekcja błędów

Do zajęć potrzebujemy zestawu 36 identycznych, najlepiej kwadratowych,
dwukolorowych kart (z jednej strony są one czarne, z drugiej białe). Poprzez
specyficzny układ kart możemy zakodować ich sumę kontrolną i w razie zmiany

53

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

jednej z nich wykryć nieprawidłowość. Ćwiczenie to wydaje się zarówno
atrakcyjne, jak i pouczające.

Opracowanych scenariuszy jest więcej – są one dostępne w języku angielskim
wraz z ilustrującymi je filmami (http://csunplugged.org), oraz w wersji polskiej
(http://jasijoasia.edu.pl).

✔✔ Scottie Go!

Inny pomysł na poprowadzenie zajęć informatycznych opiera się
na wykorzystaniu gry „Scottie Go!”. Uczniowie za pomocą kartonowych
klocków układają program, który można zeskanować i uruchomić na tablecie.
W zestawie przygotowano dla uczniów zadania o rosnącym poziomie trudności,
a także materiały dla nauczyciela. Zajęcia ze „Scottie Go!” pozwalają doskonalić
umiejętności analitycznego i logicznego myślenia, rozwijają intuicję algorytmiczną
oraz uczą rozwiązywania skomplikowanych problemów i pracy w grupie. Można
je wykorzystać, pracując z najmłodszymi uczniami, ale również na zajęciach
z trochę starszymi. Gra stanowi ciekawe uzupełnienie typowych zajęć z użyciem
komputerów.

Zasoby do wykorzystania:
¨¨ Strona internetowa Ośrodka Edukacji Informatycznej i Zastosowań

Komputerów: http://programowanie.oeiizk.edu.pl/,
(sekcja „Informatyka /prawie/ bez komputera”);

¨¨ Strona projektu „Informatyka dla Jasia i Joasi”: http://jasijoasia.edu.pl/,
(zakładka „Projekt CS Unplugged”, Scenariusze);

¨¨ Strona projektu „Computer Science Unplugged”: https://csunplugged.org/en/;
¨¨ Strona gry „Scottie Go!”: https://scottiego.com/pl/.

2.2.	Konkurs Informatyczny „Bóbr”

Głównym celem Międzynarodowego Konkursu Informatycznego „Bóbr” jest
rozwijanie oraz kształtowanie myślenia algorytmicznego i komputacyjnego,
a także popularyzacja posługiwania się technologią informacyjną i komunikacyjną
wśród wszystkich uczniów na każdym z etapów edukacyjnych. Konkurs ma
zasięg międzynarodowy i obejmuje cztery poziomy edukacyjne. Dla uczniów klas
4–6 przeznaczona jest kategoria „Benjamin”. Na stronach konkursu
(https://www.bobr.edu.pl/) znajdziemy wiele inspirujących zadań rozwijających
myślenie algorytmiczne. Warto, żeby uczestnicy szkolenia rozwiązali kilka zadań.

http://programowanie.oeiizk.edu.pl/#!/
http://programowanie.oeiizk.edu.pl/#!/

54

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Przykład zadania:
Ośmiu członków zespołu sportowego Beaver potrzebuje nowego kapitana.
Organizuje więc turniej, by go wybrać. Zawodnicy startują w parach. Zasady
turnieju są następujące:

1.	 Jeśli para składa się z zawodników z parzystymi numerami, to zwycięzcą
jest zawodnik z wyższym numerem.

2.	 Jeśli para składa się z zawodników z numerami nieparzystymi, to zwycięzcą
jest zawodnik z niższym numerem.

3.	 Jeśli para składa się z zawodników z numerami nieparzystym i parzystym,
to zwycięzcą jest zawodnik z numerem bliższym numerowi 4 (na przykład:
numer 1 jest bliżej numeru 4 niż 8, ponieważ 4 – 1 = 3 i 8 – 4 = 4).

Każdy z zawodników losowo wybiera numer między 1 i 8. Również losowo
zostają wybrane początkowe pary zawodników: 4 – 8; 1 – 6; 5 – 3; 2 – 7.
Zwycięzcy z każdej pary kontynuują turniej. Celem uczestników szkolenia jest
skonstruowanie „drzewa” turnieju i wskazanie zwycięzcy, czyli kapitana zespołu.

Rozwiązanie:

55

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Zasoby do wykorzystania:
¨¨ Strona konkursu „Bóbr”: https://www.bobr.edu.pl/.

2.3.	Zadania obliczeniowe

Do rozwiązywania zadań wymagających obliczeń można wykorzystać arkusz
kalkulacyjny. Wspomagamy w ten sposób rozwój myślenia komputacyjnego.
W arkuszu stosunkowo łatwo wykonuje się różne obliczenia i zapisuje algorytmy.
Do zajęć z algorytmiki potrzebna jest podstawowa znajomość arkusza kalkulacyjnego.

Pierwszą grupę zadań stanowią symulacje pewnych wydarzeń, drugą – zapis
algorytmów matematycznych za pomocą formuł w arkuszu kalkulacyjnym.
Na zajęciach z nauczycielami warto zrealizować przynajmniej po jednym zadaniu
symulacyjnym (np. przykładowy scenariusz 2) oraz zadaniu obliczeniowym.

✔✔ Przykład zadania: Ryby w akwarium (przykładowy scenariusz 2)

✔✔ Przykładowe zadania: Średnia arytmetyczna

Zadanie 1
Średnia arytmetyczna sześciu liczb: 7, x, 5, 5, 4, 6 jest równa 6. Ile jest równe x?
Odpowiedź: 9.

Zadanie 2
Uczeń otrzymał następujące oceny: 5, x, 5, 4, 4. Średnia tych ocen jest równa 4.
Jaka jest najniższa, a jaka najwyższa ocena?
Odpowiedź: 2 i 5.

Zadanie 3
Zawodnicy otrzymali następujące noty:

Liczba
zawodników Nota

6 3

12 4

2 x

Średnia nota uzyskana przez zawodników wynosi 4. Ile jest równe x?
Odpowiedź: 7.

56

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

2.4.	Odkrywamy algorytmy

Zgadywanie liczby, czyli „Gra w 20 pytań” to przykład algorytmicznego
wyszukiwania w zbiorze uporządkowanym. Rozpoczynamy od zabawy – jedna
osoba wymyśla liczbę, druga próbuje ją zgadnąć. Następnie stawiamy pytania,
które powinny doprowadzić do sfomułowania algorytmu. Można też posłużyć się
gotową aplikacją, która ułatwi sformułowanie algorytmu. Warto ten algorytm
zapisać np. w postaci listy kroków.

Innym przykładem realizacji tego samego algorytmu jest sprawdzenie, czy uczeń
o podanym nazwisku chodzi do danej klasy. Przygotowujemy kartki z nazwiskami
uczniów, rozkładamy je uporządkowane alfabetycznie (analogicznie do ich zapisu
w dzienniku lekcyjnym), ale odwrócone, aby nazwiska nie były widoczne. W jednym
ruchu odkrywamy jedną kartkę. Zastanawiamy się, ile kartek maksymalnie musimy
odkryć, aby znaleźć ucznia o danym nazwisku lub mieć pewność, że nie chodzi on
do tej klasy. Następnie warto powtórzyć ćwiczenie, ale zakryte kartki rozkładamy
losowo. Powtarzamy to samo pytanie. Staramy się sformułować i zapisać,
np. w postaci listy kroków, algorytm odpowiadający losowemu ułożeniu kartek.

Podobne ćwiczenia można wykonać z kartami do gry. Rozszerzamy je o poszukiwanie
„najmłodszej” i „najstarszej” karty. Naturalnie w ten sposób przybliżymy uczniom
zagadnienia z zakresu wyszukiwania elementu w zbiorze uporządkowanym
i nieuporządkowanym, znajdowania elementu minimalnego i maksymalnego.

3.	 Programowanie w środowisku Scratch

3.1.	Pierwsze kroki w Scratchu

Rozpoczynając zajęcia, warto przedstawić założenia edukacyjne oraz siłę
społeczności Scratcha. Wchodzimy na stronę środowiska: https://scratch.mit.edu/
i omawiamy ogólne założenia. Można też skorzystać z materiałów zamieszczonych
na stronie: http://programowanie.oeiizk.edu.pl, zakładka „Scratch”.

Następnie należy omówić, w jaki sposób rozpocząć naukę programowania
w środowisku Scratch, podać informacje na temat możliwości pracy online
i offline oraz procedury zakładania konta. Praktyczne ćwiczenia rozpoczynamy
od krótkiego omówienia specyfiki środowiska. Następnie poruszamy
duszkiem i programujemy reakcję na różne zdarzenia. Już na początku zostaje
wprowadzone pojęcie algorytmu, jako przepisu działania oraz programu, czyli

57

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

zapisu algorytmu w postaci zrozumiałej dla komputera. Warto wykorzystać
scenariusz zajęć Pierwsze kroki w Scratchu.

Zasoby do wykorzystania:
¨¨ Strona OEIiZK – opis środowiska Scratch oraz „Słowniczek bloczków”,

(sekcja „Warszawa programuje!”);
¨¨ Strona OEIiZK – moduł I „Pierwsze kroki w Scratchu”,

(sekcja „Mistrzowie Kodowania”).

3.2.	Przygotowujemy opowiadanie multimedialne

W ramach szkolenia uczymy, jak stworzyć opowiadania multimedialne,
ale także, jak je wykorzystać w procesie dydaktycznym. Uczniowie chętnie
tworzą takie opowieści – z podstawowych bloczków dotyczących duszka, sceny
i multimediów powstać mogą ciekawe historyjki. Są to dobre ćwiczenia zarówno
dla początkujących, jak i bardziej zaawansowanych użytkowników Scratcha.
Ponadto, realizując je, w sposób naturalny łączymy umiejętności programistyczne
z wiedzą z zakresu innych przedmiotów.

✔✔ Projekt „Dialog” (zakładka „Warszawa Programuje!”)

Projekt „Dialog” opiera się na wizualizacji fragmentu wiersza
ZOO Jana Brzechwy. Dialog odbywa się między dwoma
duszkami – potrzebna jest więc umiejętność synchronizacji
zdarzeń. Rozpoczynamy od wybrania z biblioteki tła sceny.
Następnie przygotowujemy i rozmieszczamy na scenie

dwa duszki – bohaterów dialogu. Należy przydzielić im właściwe wersy wiersza
i zadbać o to, aby wyświetlanie poszczególnych partii dialogu odbywało się
we właściwym czasie.

✔✔ Multimedialna pocztówka (zakładka „Mistrzowie Kodowania”)

Opisujemy, w jaki sposób można stworzyć w programie
Scratch multimedialną, interaktywną pocztówkę
(np. świąteczną). Opisane zostały dwa przykładowe projekty:
„Św. Mikołaj wpada do komina” oraz „Zapalamy lampki
na choince”. Oba projekty pobudzają do kreatywności, toteż

realizując je, nie trzeba ściśle trzymać się scenariusza, lecz pozwolić uczniom
wdrażać ich pomysły.

http://programowanie.oeiizk.edu.pl/#!/
http://programowanie.oeiizk.edu.pl/#!/

58

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Zasoby do wykorzystania:
¨¨ Strona OEIiZK – scenariusz 1: Dialog,

(sekcja „Warszawa programuje!”);
¨¨ Strona OEIiZK – Moduł VIII „Multimedialna pocztówka”,

(sekcja „Mistrzowie Kodowania”);
¨¨ Studio z projektami „Warszawa programuje!”.

3.3.	Tworzymy własne gry

Tworzenie prostych gier to kolejna aktywność, która pochłania uczniów
oraz stwarza okazję, by w sposób naturalny wprowadzić pojęcie zmiennej,
np. do zliczania punktów. Przygotowując gry uczniowie, mogą zdobyć
wiele umiejętności związanych z programowaniem, gdyż widzą atrakcyjny
cel – stworzenie gry według własnego scenariusza. Mogą również przyswajać
wiedzę z różnych dziedzin. Na przykład: wobec konieczności zdefiniowania
kształtu lub opisania ruchu muszą myśleć w kategoriach matematycznych,
wykorzystując algebrę i geometrię. Rozwijają umiejętności psychologiczne,
socjologiczne, a także uczą się, jak się uczyć.

✔✔ Zdrowe odżywianie („Warszawa programuje!”)

Gra polega na sterowaniu żuczkiem za pomocą
strzałek z klawiatury. Na planszy znajdują się inne
obiekty reprezentujące zdrową i niezdrową żywność.
Gdy żuczek „złapie” obiekt, pojawia się stosowny
komunikat – w zależności od tego, czy zostało dotknięte

np. jabłko, czy chipsy. Gra ma więc konkretne przesłanie edukacyjne.

✔✔ Kot w labiryncie („Mistrzowie Kodowania”)

Tworzymy grę, w której zadaniem gracza jest
wyprowadzenie kota z labiryntu. Należy zbudować
skrypty sterujące postacią za pomocą klawiatury. Można
wykorzystać gotową planszę lub stworzyć własną.
Dodatkowo projektujemy obsługę zdarzeń zachodzących

na scenie, takich jak na przykład próba wejścia na ścianę, dotarcie do mety.
Dodajemy punktację lub wzbogacamy projekt o nowe plansze – tworząc kilka
poziomów gry.

http://programowanie.oeiizk.edu.pl/#!/
http://programowanie.oeiizk.edu.pl/#!/
https://scratch.mit.edu/studios/4487107/

59

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

✔✔ Gra zręcznościowa – odbijanie piłeczki („Mistrzowie Kodowania”)

Tworzymy grę, w której użytkownik steruje paletką, a jego
zadaniem jest jak najdłużej odbijać piłeczkę. Może ona
odbijać się od trzech ścian – na górze, z prawej i z lewej
strony. Jeśli dotknie dolnej ściany – gracz przegrywa. Piłka
może po pewnym czasie przyspieszać. Z zagadnień typowo

programistycznych występują tu: sterowanie obiektem i zdarzenia, ale także
definiowanie warunków. Pojawiają się też elementy fizyki – odbicie od ściany.

Zasoby do wykorzystania:
¨¨ Strona OEIiZK – scenariusz 2: Zdrowe odżywianie,

(sekcja „Warszawa programuje!”);
¨¨ Strona OEIiZK – moduł III „Kot w labiryncie”,

(sekcja „Mistrzowie Kodowania”);
¨¨ Strona OEIiZK – Moduł V „Odbijanie piłeczki”,

(sekcja „Mistrzowie Kodowania”);
¨¨ Studio z projektami „Warszawa programuje!”.

3.4.	Opracowujemy symulacje

Środowisko Scratch umożliwia również przygotowanie projektów, których głównym
celem jest poznawanie rzeczywistości. Budujemy specjalnie skonstruowany model
jako uproszczony podzbiór rzeczywistości, korzystając z którego osoba ucząca się
zdobywa – poprzez zabawę – nową wiedzę o świecie. Pobudzamy w ten sposób
uczniów do formułowania pytań i poszukiwania odpowiedzi, rozwiązywania
problemów teoretycznych i praktycznych. Poniżej przedstawiono dwa przykłady
projektów do wykorzystania. Jeden z nich (np. „Elektrownia wiatrowa”) należy
wykonać całościowo na zajęciach, natomiast drugi można przygotować w formie
szablonu – w którym jedynie niektóre elementy zostaną oprogramowane – lub
ewentualnie zaprezentować w wersji całkowicie opracowanej.

✔✔ Śluza wodna („Warszawa programuje!”)

Symulacja wyjaśnia mechanizm działania śluzy wodnej.
Użytkownik obserwuje przepływanie łódki między
zbiornikami o różnych poziomach wody. Opracowując
projekt samodzielnie, uczniowie zapamiętują z łatwością
zasady działania śluzy.

http://programowanie.oeiizk.edu.pl/#!/
http://programowanie.oeiizk.edu.pl/#!/
http://programowanie.oeiizk.edu.pl/#!/
https://scratch.mit.edu/studios/4487107/

60

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

✔✔ Elektrownia wiatrowa („Warszawa programuje!”)

Dzięki temu projektowi można wyjaśnić wykorzystanie
siły wiatru do zasilania gospodarstwa domowego energią
elektryczną. Pozwala on na symulację działania układu
składającego się z elektrowni, akumulatora oraz domu
zasilanego siłą wiatru bezpośrednio z wiatraka, bądź

z akumulatora. W projekcie występuje rozbudowany system warunków.
Programując, uczniowie poznają zależności logiczne i mają okazję zrozumieć
ich zastosowanie. Dodatkowym atutem projektu jest wykorzystanie mikrofonu
do symulacji działania wiatru. Im mocnej dmuchamy, tym szybciej wiatrak się kręci.

Zasoby do wykorzystania:
¨¨ Strona OEIiZK – scenariusz 5: Śluza wodna,

(sekcja „Warszawa programuje!”);
¨¨ Strona OEIiZK – scenariusz 6: Elektrownia wiatrowa,

(sekcja „Warszawa programuje!”);
¨¨ Studio z projektami „Warszawa programuje!”.

3.5.	Rysujemy

Po przygotowaniu kilku projektów warto przejść do zagadnień nieco
trudniejszych. Z jednej strony będą to zadania oparte na wykorzystaniu
grafiki żółwia w Scratchu, z drugiej – ukierunkowane na naukę algorytmiki.
Implementując rysunki z wykorzystaniem pióra, warto zacząć od prostych
przykładów. Jest to doskonała okazja do utrwalenia umiejętności tworzenia
zapisu w języku programowania, powtarzania czynności oraz definiowania
funkcji – własnych bloków. Uczniowie mogą szukać inspiracji, przeglądając
projekty innych użytkowników – np. poprzez wpisanie frazy: 100% pen.

✔✔ Rabata („Warszawa programuje!”)

Użytkownik obserwuje podczas działania projektu
kreślone przez duszka wielobarwne kwiatki układające
się w rabatę. Zaczynamy od prostych rysunków, by potem
przejść do coraz bardziej skomplikowanych. Można uczyć
się metodą prób i błędów, ale warto również zachęcić

do stosowania obliczeń. Jeśli chcemy uzyskać pracę efektowną pod względem
estetycznym, warto różnicować grubość pisaka i kolory.

http://programowanie.oeiizk.edu.pl
http://programowanie.oeiizk.edu.pl
https://scratch.mit.edu/studios/4487107

61

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

✔✔ Gwiazdozbiór („Warszawa programuje!”)

Po uruchomieniu gotowego projektu użytkownik obserwuje
pojawiające się na niebie gwiazdki rysowane przez duszka.
Przygotowując projekt, definiujemy własne bloki, by
potem z gotowych poleceń, jakby „cegiełek”, budować
całą prezentację. Można wprowadzić zarówno bloki bez

parametru, jak i z parametrem. Opracowanie projektu stanowi doskonałe
przygotowanie do dalszego kształcenia umiejętności programistycznych.

Zasoby do wykorzystania:
¨¨ Strona OEIiZK – scenariusz dodatkowy: Rabata,

(sekcja „Warszawa programuje!”);
¨¨ Strona OEIiZK – scenariusz 9: Gwiazdozbiór,

(sekcja „Warszawa programuje!”);
¨¨ Studio z projektami „Warszawa programuje!”.

3.6.	Implementujemy algorytmy obliczeniowe

✔✔ Gra logiczna – zgadywanie liczby („Mistrzowie Kodowania”)

Tworzymy grę polegającą na odgadywaniu liczby
wylosowanej przez komputer. Po każdej próbie gracz jest
informowany, czy podana przez niego liczba jest mniejsza,
większa, czy równa wartości pamiętanej przez komputer.
Zabawa ma na celu odkrycie przez gracza algorytmu

postępowania prowadzącego do jak najszybszego odgadnięcia wylosowanej
liczby. Algorytm ten został wprowadzony na zajęciach podczas realizacji
punktu 2.4. Na lekcji część z uczniów może przygotować odwrotną realizację
algorytmu – gracz wymyśla liczbę, a komputer „zgaduje”.

Można także zaproponować przygotowanie skryptów do prostych obliczeń.
Celem zadań może być „przeliterowanie” liczby – czyli wypisanie cyfra po cyfrze
od końca (przykładowe zadanie 1) oraz znalezienie największej liczby z podanych
(przykładowe zadanie 2).

Zasoby do wykorzystania:
¨¨ Strona OEIiZK – moduł VI „Zgadywanie liczby”,

(sekcja „Mistrzowie Kodowania”).

http://programowanie.oeiizk.edu.pl/#!/
http://programowanie.oeiizk.edu.pl/#!/
https://scratch.mit.edu/studios/4487107/
http://programowanie.oeiizk.edu.pl/#!/

62

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

3.7.	Podsumowanie – programowanie w środowisku wizualnym

Powyżej zostało przedstawionych wiele zagadnień, które należy wyjaśnić
podczas nauki podstaw programowania w środowisku wizualnym. Najczęściej
ich omawianie stwarza okazję do pierwszego usystematyzowanego kontaktu
uczniów ze światem programowania, toteż niezwykle ważne jest, by był
to przekaz nie tylko czysto techniczny, ale również wzbogacony odwołaniem
do głównych pojęć informatycznych. Przedstawione projekty należy traktować
jako przykładowe – na zajęciach z uczestnikami szkolenia można zrealizować
niektóre z nich lub dobrać inne. Należy jednak zadbać zarówno o różnorodność
tematyczną, jak i o szerokie wykorzystanie konstrukcji programistycznych.

Na koniec tej części zajęć, przedstawiamy uczestnikom szkolenia informacje,
gdzie można znaleźć ciekawe materiały do nauki podstaw programowania
w Scratchu. Zachęcamy też do wymiany doświadczeń. Poszukując podpowiedzi,
warto pamiętać o kartach Scratcha. Są one dobrze przygotowane pod względem
metodycznym – przedstawiają obrazowo pojedyncze pojęcia w sposób zwięzły
i zrozumiały dla ucznia (https://scratch.mit.edu/info/cards).

Część zaprezentowanych powyżej scenariuszy powstała w ramach projektu
„Mistrzowie Kodowania”. Polecamy nauczycielom zasoby tego projektu, które
są dostępne na stronie: http://wiki.mistrzowiekodowania.pl. Można tam znaleźć
kolejne projekty.

Trzecim źródłem, o którym nie można zapomnieć, jest strona główna
Scratcha. Znajdują się tam przykładowe projekty – wraz z opisem, jak je
wykonać – przygotowane przez twórców i współpracowników Scratcha
(zakładka „Wskazówki”) oraz publikowane przez użytkowników. Codziennie
przybywa nowych, a na stronie głównej pojawiają się wybrane – w pewnym
sensie najlepsze. Natomiast w zakładce „Przeglądaj” projekty są pogrupowane
według rodzajów: animacje, sztuka, gry, muzyka, opowiadania i samouczki.

Środowisko Scratch zostało tu wybrane ze względu na jego ogromną popularność
oraz bogactwo dostępnych materiałów zarówno w języku polskim, jak
i angielskim. Jednak nie jest to jedyne środowisko do programowania wizualnego.
Na zajęciach omawiamy, choćby skrótowo, także działanie innych środowisk –
np. Kodable, Blockly. Posiadają one różne, choć zbliżone, możliwości. Na uwagę
zasługuje w szczególności środowisko Blockly, które nie tylko może być
adaptowane przez różne środowiska w zależności od potrzeb (np. do sterowania

63

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

robotami), ale wydaje się wartościowe samo w sobie. Ze względu na ograniczony
zasób bloczków można w nim uczyć podstaw algorytmiki. Uczeń nie tyle
skupia się na poznaniu środowiska, jego wielu możliwościach czy ciekawych
rozwiązaniach multimedialnych, ile na oprogramowaniu algorytmów. Stąd już
tylko jeden krok do programowania w języku tekstowym.

Podsumowując, w środowisku wizualnym łatwiej niż w tekstowym rozpocząć
działania związane z programowaniem. Gdy przeciągamy bloczki, nie musimy
troszczyć się o składnię – interfejs programu podpowiada odpowiednią formę.
Trudniej też o zrobienie błędu. W miarę nabierania przez użytkowników
wprawy okazuje się, że zaczynają oni postrzegać przeciąganie bloczków jako
uciążliwe, gdyż są w stanie szybciej wprowadzić polecenia w trybie tekstowym.
Rozbudowane skrypty stają się mało czytelne. Z czasem następuje potrzeba
przejścia do środowiska tekstowego. Można zacząć np. od zadań opartych
na wykorzystaniu grafiki żółwia w Pythonie.

Zasoby do wykorzystania:
¨¨ Karty Scratcha;
¨¨ Strona domowa Scratcha, „Wskazówki”: https://scratch.mit.edu/tips;
¨¨ Strona projektu „Mistrzowie Kodowania”;
¨¨ Strona Kodable (gra bezpłatna w wersji podstawowej);
¨¨ Gry do nauki programowania Blockly Games;
¨¨ Środowisko programowania Blockly.

4.	 Sterowanie obiektem za pomocą sekwencji poleceń

4.1.	Grafika żółwia w Pythonie – wprowadzenie

Programowanie w języku tekstowym warto zacząć od wykorzystania grafiki
żółwia – idei wypracowanej przez Seymoura Paperta. Stanowi ona podstawę
języka Logo. Jednak motywy graficzne można również opracowywać
z wykorzystaniem tego podejścia w języku Python z biblioteką Turtle.
Grafika żółwia kojarzy się głównie z językiem Logo, ale warto zwrócić uwagę,
że geometria żółwia była stosowana jeszcze przed powstaniem języka Logo.
Występuje także w wielu narzędziach i środowiskach dedykowanych do nauki
programowania dla dzieci, np. w Scratchu (projekty z wykorzystaniem pióra)
czy „Godzinie kodowania” (chociaż niekoniecznie używa się w nich nazwy „grafika
żółwia”) – została także wykorzystana wcześniej w tym szkoleniu.

https://scratch.mit.edu/info/cards
http://wiki.mistrzowiekodowania.pl
https://game.kodable.com/
https://blockly-games.appspot.com/?lang=pl
https://blockly-demo.appspot.com/static/demos/code/index.html?lang=pl

64

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Jakie cechy tego podejścia sprawiają, że można z jego pomocą uczyć
programowania nawet małe dzieci? Można wskazać na trzy istotne aspekty:

•	 proste i konkretne, a przez to zrozumiałe polecenia, zbliżone do języka
naturalnego: „idź naprzód o… kroków”, „obróć się o kąt…”, „podnieś pisak” itp.;

•	 postać żółwia – graficzny symbol, który pozwala dziecku wyobrazić sobie
wykonawcę algorytmu zapisanego w języku programowania;

•	 semantyka operacyjna – uczeń obserwuje działanie stworzonych przez
siebie programów. Interpretacja kodu powoduje na ekranie efekt, który
dość łatwo ocenić pod względem zgodności ze wzorcem. Widząc, jak żółw
rysuje, uczeń sprawdza, czy wykonuje zadanie prawidłowo, może zatem
znaleźć ewentualny błąd.

Podstawowe komendy:

Polecenie Wyjaśnienie

fd(n) forward – przesunięcie żółwia w aktualnym kierunku o n kroków

bk(n) backward – przesunięcie żółwia przeciwnie do aktualnego kierunku o n kroków

rt(alfa) right – obrót żółwia w prawo o kąt alfa

lt(alfa) left – obrót żółwia w lewo o kąt alfa

pu() pen up – żółw podnosi pisak, czyli nie rysuje podczas przemieszczania się

pd() pen down – żółw opuszcza pisak, czyli rysuje podczas przemieszczania się

Importowanie biblioteki Turtle: from turtle import *

Zaczynamy pracę w języku Python od wykonywania prostych obliczeń w trybie
interaktywnym, następnie wprowadzamy proste zadania graficzne –
np.: rysowanie stołu, krzesła, mostu, domu, itp., tworząc ciąg poleceń w pliku.

Rysunek 2. Przykładowe rysunki

65

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Zasoby do wykorzystania:
¨¨ Jochemczyk W., Olędzka K., (2013), Python dla wszystkich, Toruń:

Informatyka w Edukacji, (zakładka: „O Pythonie”);
¨¨ Film Pythonowe początki;
¨¨ Materiały OEIiZK: http://python.oeiizk.edu.pl/,

(zakładka: „Rysowanie z żółwiem”).

4.2.	Uczymy żółwia nowych słów

Kod złożony z fragmentów stanowiących logiczną całość warto podzielić
na elementy określające pojedyncze funkcje. Dzięki temu możemy wielokrotnie
wykorzystać dany kod, a cały program staje się bardziej zwięzły i przejrzysty.

Uczestnicy szkolenia powinni spróbować narysować dobrze znane przedmioty.
Najlepiej zacząć od rysunków, które zawierają tylko kąty proste, gdyż ich wykonanie
jest łatwiejsze dla uczniów, a następnie przejść do wykorzystania także innych
kątów. Pewną trudność mogą sprawdzać rysunki, w których występują nietypowe
długości odcinków – np. przekątna kwadratu. Uczestnicy powinni wykonać również
swoje własne rysunki. Na początku uczniowie chętniej rysują motywy konkretne,
niż abstrakcyjne wzory. Poniżej przykładowy rysunek (uwaga: nieco pracochłonny).

4.3.	Powtarzamy czynności

Najlepiej zacząć od narysowania kwadratu, najpierw ręcznie – zapisując
wszystkie instrukcje (i od razu je grupując), a później z wykorzystaniem instrukcji
for. Następnie można przejść do tworzenia innych wielokątów foremnych:
trójkąta, pięciokąta, sześciokąta itd. Chociaż pierwsze rysunki zapewne będą
powstawać metodą prób i błędów, należy omówić, jak wyliczać kąty.

Rysunek 3. Efekt wywołania funkcji kot()

http://python.oeiizk.edu.pl/
http://python.oeiizk.edu.pl/
https://www.youtube.com/watch?v=n-mFQ2JqO8o

66

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Instrukcja iteracji jest bardzo ważna w nauce programowania i nie można tego
tematu zlekceważyć. Trzeba poświęcić odpowiednią ilość czasu na ćwiczenia.
Zaczynamy od prostych przykładów, na których wyraźnie widać, jakie
elementy się powtarzają. Następnie można przejść do trochę trudniejszych, by
dobrze wyćwiczyć umiejętność stosowania instrukcji iteracji. Można też nawiązać
do znanego już z programowania w Scratchu bloczka powtórz.

Pierwszą grupę przykładowych zadań stanowią różnego rodzaju szlaczki.

Kolejne zadania mogą opierać się na tworzeniu motywów, których rysowanie
zaczyna i kończy się w tym samym miejscu.

W celu urozmaicenia motywów warto wzbogacić je o kolory.

Rysunek 6. Efekt wywołania funkcji kwiat() (przykładowe zadanie 5)

Rysunek 5. Różne wzory (przykładowe zadanie 4)

Rysunek 4. Szlaczki (przykładowe zadanie 3)

67

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

4.4.	Powtarzamy i podejmujemy decyzje

W dalszej części szkolenia można wprowadzić modyfikacje do wzorów
powtarzalnych. W zależności od tego, po raz który jest wykonywana pętla,
element powtarzalny może być inny lub różnić się jedynie parametrem.

✔✔ Przykładowy scenariusz – Rysowanie grzebieni (Scenariusz 1)

4.5.	Dzielimy problem na problemy cząstkowe

Jeśli w motywie występują figury podobne do siebie – różnej wielkości, koloru
lub o równej liczbie elementów powtarzających się – można napisać funkcję
z parametrem. Gdy chcemy narysować mały kwadrat, średni kwadrat oraz duży
kwadrat – należy zdefiniować jedną funkcję z parametrem: kwadrat(bok).
Definiujemy ją analogicznie jak bezparametrową. Jedyna różnica polega
na wymienieniu w nagłówku wszystkich parametrów – kolejne z nich
oddzielamy przecinkami.

Przykład zadania:

Rysunek 7. Przykład motywu, w którym należy zdefiniować funkcję z parametrem

68

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

4.6.	Projektujemy posadzki

Po zrealizowaniu prostszych zadań z wykorzystaniem iteracji, należy przejść
do bardziej skomplikowanych. Są to projekty typu „posadzka”, w których
jeden element powtarzany jest wiele razy. Wykonując je, mamy do czynienia
z zagnieżdżonymi pętlami. Rozwiązanie można zapisać na wiele sposobów.

4.7.	Budujemy piramidy

Ostatnią – najtrudniejszą – grupę zadań stanowią te oparte na wykorzystaniu
wartości zmiennej sterującej pętli for. Należy zacząć od prostych zadań
polegających na rysowaniu odcinków, prostokątów lub innych figur – od
najmniejszej do największej lub na odwrót.

Rysunek 8. Posadzka (przykładowe zadanie 6)

Rysunek 9. Różne „ząbki” (przykładowe zadanie 7)

69

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Podobnie jak poprzednio – w celu uatrakcyjnienia rysowanych motywów warto
dodać kolory.

Trudniejsze przykłady wymagają napisania kilku funkcji. Kilka takich zadań
powinno się zrealizować na zajęciach z nauczycielami, by potem mogli
w analogiczny sposób pracować ze zdolną młodzieżą.

4.8.	Rozwiązujemy zadania

Uczniowie, rozwiązując proste problemy, poznają polecenia języka
programowania i utrwalają ich znajomość. Następnie powinni przystąpić
do realizowania bardziej złożonych zadań. Niekoniecznie muszą one dotyczyć
trudniejszych zagadnień – na to przyjdzie czas w klasach starszych. Uczniowie
dowiadują się, jak dzielić problem na problemy cząstkowe i stosować nowe
umiejętności w sytuacjach typowych oraz mniej typowych. Możemy też omówić
z nimi technikę projektowania algorytmów (top-down) i ich implementacji
(bottom-up). Trzeba pamiętać, że są to pierwsze kroki uczniów w obszarze
programowania, dlatego nie powinni czuć się przytłoczeni. Inaczej jest, gdy
prowadzimy zajęcia dla nauczycieli – trzeba zadbać, by mieli szersze spojrzenie
na dany aspekt.

Rysunek 10. Przykłady rysunków z wykorzystaniem zmiennej sterującej pętli
(przykładowe zadania 8 i 9)

70

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Po wykonaniu kilku zadań omawiamy etapy rozwiązywania problemów
informatycznych. Jest to dopiero początek na drodze do poznawania algorytmiki,
ale warto już na tym etapie kształtować prawidłowe myślenie. Omawiamy
kolejno, na czym polegają opis i analiza sytuacji problemowej, sporządzanie
specyfikacji problemu, projektowanie rozwiązania, komputerowa realizacja
rozwiązania oraz jego testowanie i prezentacja. Szczególnie należy podkreślić,
że przy wykonywaniu konkretnego zadania najpierw trzeba przemyśleć sposób
jego rozwiązania, a dopiero później zacząć pisać kod. Wiele spośród zadań można
bowiem rozwiązać za pomocą różnych metod.

W nauce programowania bardzo istotne jest testowanie.
Przede wszystkim staramy się na bieżąco reagować na błędy – najczęściej
wychwytujemy błędy syntaktyczne. Po zakończeniu pisania kodu, powinniśmy
również skrupulatnie przetestować rozwiązanie, gdyż błędy logiczne są dużo
trudniejsze do wykrycia. Każde zadanie sprawdzamy, przyjmując wartości
brzegowe parametrów i kilka pośrednich. Jeśli możliwych wartości parametrów
jest niewiele, zaleca się przeprowadzenie testowania dla wszystkich.

Skąd powinniśmy czerpać pomysły na zadania? Przede wszystkim należy
nawiązywać do zjawisk typowych dla życia codziennego. Uczniowie chętniej

Rysunek 11. Przykłady trudniejszych zadań

71

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

zajmują się problemami, które uważają za bliskie. Można także skorzystać
z różnych serwisów, są one jednak adresowane głównie do uczniów starszych.
Niektóre z nich mogą być wykorzystywane w nauce na poziomie szkoły
podstawowej. Na stronach Przedmiotowego Konkursu Informatycznego
„miniLOGIA” (dla uczniów szkół podstawowych województwa mazowieckiego)
zamieszczono wiele zadań graficznych (http://minilogia.oeiizk.waw.pl) –
znajdują się wśród nich zarówno prostsze, jak i trudniejsze, co pozwala dostosować
poziom trudności zadania do bieżącego stopnia zaawansowania uczniów. Zadania
o wyższym stopniu trudności można też znaleźć na stronie konkursu „LOGIA” –
przeznaczonego dla uczniów klas z gimnazjalnych (http://logia.oeiizk.waw.pl).

Zasoby do wykorzystania:
¨¨ Strona konkursu „miniLOGIA”: http://minilogia.oeiizk.waw.pl/;
¨¨ Strona konkursu „LOGIA”: http://logia.oeiizk.waw.pl;
¨¨ Strona konkursu „Bóbr”: https://www.bobr.edu.pl/;
¨¨ Strona projektu „Godzina Kodowania”: https://code.org/.

4.9.	Sterujemy robotem

Na szkoleniu należy wspomnieć o różnych rodzajach robotów, takich jak
np. Ozobot, WeDo, Dash&Dot, Photon, mBot. W zależności od posiadanych
zasobów warto przeprowadzić krótkie warsztaty z wybranym oprogramowaniem
i sprzętem. Ponadto uczestnicy mogą wymienić się swoimi doświadczeniami
związanymi z tym, jak pozyskać wybrane pomoce dydaktyczne dla szkoły, lecz
również ze sposobami wykorzystania ich w pracy z uczniami.

Zajęcia z robotyki można uzupełnić o micro:bit. Jest to mikrokomputer
zaprojektowany do pracy z dziećmi, który można zaprogramować przy użyciu
języka wizualnego lub tekstowego – np. Python. Warto przygotować różne
projekty, np. związane z IoT (ang. Internet of Things – internet rzeczy).

Należy zwrócić uwagę, że realizacja zapisów podstawy programowej możliwa jest
bez wykorzystania robotów. Mogą one jednak wzbogacić i uatrakcyjnić zajęcia,
więc warto wykorzystać sprzęt, którym już dysponujemy, lub zakupić go, jeśli
placówka ma taką możliwość.

Zajęcia praktyczne związane z elementami robotyki można uzupełnić
zagadnieniami o charakterze teoretycznym – np. analizując wybrane problemy
z archiwów konkursu „Bóbr” (https://www.bobr.edu.pl/).

72

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

✔✔ Zadanie: Spacer robota

Odpowiedź: Niedozwolony jest ruch po skosie na prawo w dół – przedostatni
ruch „czerwonego” robota.

✔✔ Zadanie: Robot

73

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Odpowiedź: Ciągiem poleceń, które musi wykonać robot, jest:

Zasoby do wykorzystania:
¨¨ Robot Ozobot – informacje;
¨¨ Zestawy Lego WeDo;
¨¨ Bloki Scratcha w integracji z Lego WeDo;
¨¨ Strona producenta Lego WeDo;
¨¨ Scenariusze lekcji z wykorzystaniem robotów Dash i Dot;
¨¨ Robot Photon – informacje;
¨¨ Strona konkursu „Bóbr”.

5.	 Praca z uczniami o różnych potrzebach edukacyjnych

Niezwykle ważnym zadaniem nauczyciela jest wyszukiwanie i rozwijanie
talentów uczniów. Informatyka daje ogromne możliwości realizowania pasji
uczniów, gdyż promuje nie tylko tych postrzeganych w szkole jako zdolni,
ale aktywizuje słabszych. Praktycznie każdy młody człowiek może połączyć
swoje zainteresowania z tą dziedziną wiedzy, by je lepiej rozwinąć. Zadaniem
nauczyciela jest stymulować ucznia do nieustannego rozwoju i towarzyszyć mu
w miarę możliwości na tej drodze.

W wielu szkołach prowadzone są koła zainteresowań. Na szkoleniu nauczyciele
mogą wymienić się doświadczeniami na temat ich działania. Ponadto warto
zachęcić uczestników do zaangażowania się w przygotowywanie uczniów
do konkursów. Przykładem takiego konkursu jest wspomniany wcześniej „Bóbr”
(https://www.bobr.edu.pl/). Warto, żeby nauczyciele, poznając jego ogólne
założenia, rozwiązali kilka zadań z kategorii „Benjamin”. Można uczestników
podzielić na trzyosobowe grupy i każdej grupie przydzielić kilka zadań,
a następnie wspólnie je omówić.

Na szkoleniu należy też wspomnieć, w kontekście pracy z uczniami o różnych
potrzebach edukacyjnych, o możliwości wykorzystania aplikacji multimedialnych
do wspomagania rozwoju uczniów ze specyficznymi trudnościami. Na przykład
w Scratchu istnieje wiele opracowanych aplikacji, które wspomagają uczenie się.

https://www.edu-sense.com/pl
https://www.akcesedukacja.pl/lego-wedo-2-0/
https://scratch.mit.edu/wedo
https://education.lego.com/en-us/downloads/wedo-2/software
http://nauczyciele.makewonder.pl/scenariusze-lekcji.html
http://meetphoton.com/pl/o-robocie
https://www.bobr.edu.pl/

74

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Przygotować je mogą nauczyciele dla uczniów – bądź uczniowie dla siebie
nawzajem. Przykłady takich projektów to „Spadające jabłuszka” i „Układanie
wyrazów”. W pierwszym uczniowie zbierają „dobre jabłka” – np. wyrazy poprawnie
zapisane pod względem ortograficznym, w drugim z liter układają wyrazy.
Gotowe projekty można modyfikować, dodając inne ćwiczenia. Gry o charakterze
edukacyjnym znajdują się również na stronie http://wiki.mistrzowiekodowania.pl
w punkcie: Szkoła podstawowa (klasy 4–6), zaawansowane.

Nawet jeśli podczas szkolenia projekty te nie będą przygotowywane, warto
zaprezentować je w formie pokazu. Źródłem ciekawych projektów edukacyjnych
jest również strona Scratcha. Na szkoleniu można poświęcić trochę czasu
na wyszukanie kilku wartościowych projektów. Uczestnicy nauczą się nie tylko,
jak poszukiwać odpowiednich materiałów, ale także, jak je oceniać.

Zasoby do wykorzystania:
¨¨ Strona konkursu „Bóbr”: https://www.bobr.edu.pl/;
¨¨ Studio z projektami edukacyjnymi: https://scratch.mit.edu/studios/4487109;
¨¨ Strona projektu „Mistrzowie Kodowania”: http://wiki.mistrzowiekodowania.pl/;
¨¨ Strona domowa Scratch: https://scratch.mit.edu.

6.	 Podsumowanie

Na koniec szkolenia warto jeszcze raz wrócić do zapisów w podstawie
programowej nie tylko po to, by przypomnieć treści omawiane na szkoleniu,
ale aby pokazać je w szerszej perspektywie. Nauczyciel musi bowiem dobrze
orientować się w materiale, którego naucza, ale także wiedzieć, co uczniowie
powinni umieć, zanim przyjdą do czwartej klasy oraz czego będą się uczyć
w klasach starszych. Konieczność ta wynika również ze spiralnego układu treści
nauczania w podstawie programowej.

http://wiki.mistrzowiekodowania.pl/index.php?title=Strona_g%C5%82%C3%B3wna

75

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Przykładowe scenariusze zajęć

Scenariusz 1 – Rysujemy grzebienie

Opis zajęć

Głównym celem zajęć jest nauka powtarzania czynności oraz podejmowania
decyzji. Uczniowie nabywają tych umiejętności i utrwalają je podczas realizacji
zadania: Grzebienie, które zapisują i uruchamiają w języku Python.

Czas trwania

45 minut

Realizacja

Zaczynamy od narysowania grzebienia mającego ząbki jednakowej wysokości.
Następnie wprowadzamy modyfikacje – co drugi lub co trzeci ząbek musi być
inny. Na kolejnym etapie zajęć uczestnicy przygotowują dla siebie nawzajem
grzebienie – zagadki. W ten sposób każdy ma możliwość, by zaprojektować swój
własny wzór, ale także, aby opisać wzór wymyślony przez innego uczestnika.

✔✔ Zadanie: Grzebień prosty

Zdefiniuj funkcję: grzebien(ile), po wywołaniu której powstanie rysunek
grzebienia składającego się z trzonka oraz identycznych ząbków. Liczbę ząbków
określa parametr ile, który może przyjmować wartości od 2 do 20. Długość
trzonka wynosi 60, odległości między ząbkami 10, a wysokość ząbków 20.

Zauważmy, że wszystkie odległości są wielokrotnościami 10, dlatego warto
zdefiniować zmienną pomocniczą a, która pozwoli określić proporcje: trzonek będzie
miał długość 6*a, odstęp między ząbkami a, natomiast wysokość ząbków 2*a.

grzebien(7) grzebien(10)

76

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Najpierw żółw przesuwa się o długość trzonka pomniejszoną o a, gdyż ten
odcinek rysujemy razem z pierwszym ząbkiem. Później kolejno przesuwamy
żółwia i rysujemy ząbki. Pojedynczy krok składa się z przesunięcia o a, obrotu
w lewo o 90°, przesunięcia w przód o 2*a, wycofania się i obrotu w prawo o 90°.

1. from turtle import *

2.

3. def grzebien(ile):

4. a = 10

5. fd(5*a)

6. for i in range(ile):

7. fd(a)

8. lt(90)

9. fd(2*a)

10. bk(2*a)

11. rt(90)

✔✔ Zadanie: Co drugi ząbek krótszy

Zdefiniuj funkcję co_drugi(ile), po wywołaniu której powstanie rysunek
grzebienia składającego się z trzonka oraz ząbków. Parametr ile określa
liczbę ząbków. Ząbki mają na przemian wysokość 10 i 20. Parametr ile może
przyjmować wartości od 2 do 20. Długość trzonka wynosi 60, a odległości między
ząbkami 10.

Rozwiązując to zadanie, modyfikujemy funkcję napisaną poprzednio. Jedyną zmianą,
jaką wprowadzamy, jest rysowanie raz wyższego, raz niższego ząbka. Uzależniamy
to od wartości zmiennej sterującej pętlą: i. Kolejne wartości zmiennej i to: 0, 1, 2,
3, 4 i tak dalej, aż do: ile-1 – wobec czego możemy rozpatrzyć resztę z dzielenia
przez 2. Dla liczby parzystej otrzymamy resztę 0, a dla nieparzystej 1. Pozwoli
to na zapisanie warunku, który będzie określał wysokość ząbka.

co_drugi(7) co_drugi(10)

77

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

1. def co_drugi(ile):

2. a = 10

3. fd(5*a)

4. for i in range(ile):

5. fd(a)

6. lt(90)

7. if i % 2 == 1:

8. fd(2*a)

9. bk(2*a)

10. else:

11. fd(a)

12. bk(a)

13. rt(90)

✔✔ Zadanie: Co trzeci ząbek wyższy

W kolejnym kroku komplikujemy zadanie – teraz co trzeci ząbek musi być wyższy.

1. def co_trzeci(ile):

2. a = 10

3. fd(5*a)

4. for i in range(ile):

5. fd(a)

6. lt(90)

7. if i % 3 == 2:

8. fd(2*a)

9. bk(2*a)

10. else:

11. fd(a)

12. bk(a)

13. rt(90)

co_trzeci(7) co_trzeci(10)

78

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

✔✔ Zadanie: Projektujemy własne wzory

Kolejnym zadaniem, jakie stawiamy przed uczestnikami, jest zaprojektowanie
własnego wzoru. Korzystając z wcześniej napisanych programów i modyfikując
je, projektujemy inne wzory. Następnie uczestnicy wymieniają się pomysłami
i próbują wzajemnie odtworzyć zaprojektowane przez siebie wzory.
Pozwala to z jednej strony na kreatywność, a z drugiej na rozwijanie różnych
umiejętności – analizy rysunku, modyfikowania kodu programu, testowania.

Podsumowanie

W czasie tych zajęć koncentrujemy się na opisaniu w języku formalnym
(programowania) zależności, które można dostrzec na rysunku.
Analizujemy motyw, by sformułować zależność, a następnie zapisać ją w języku
Python. Ćwiczymy rozwiązywanie problemu z zastosowaniem instrukcji iteracji
i instrukcji warunkowej. Uczestnicy poznali już wcześniej te konstrukcje,
wykonując zadania wymagające użycia Scratcha i arkusza kalkulacyjnego.

Podczas programowania warto zwrócić uwagę na błędy popełniane przy pisaniu
programów. Trzeba nie tylko pomóc je znaleźć i poprawić, ale także pokazać,
jak je wyszukiwać. Często początkujący programiści mają z tym problem.

Naturalne rozszerzenie projektu opiera się na dodawaniu wzorów kolorowych.
Można zatem zaproponować inny regularnie powtarzający się motyw
i rozszerzyć go.

Scenariusz 2 – Ryby w akwarium

Opis zajęć

Głównym celem zajęć jest przygotowanie symulacji w arkuszu kalkulacyjnym.
Pokazujemy, jak zapisać algorytm rozwiązujący problem za pomocą arkusza
kalkulacyjnego. Podczas zajęć zapisujemy algorytm za pomocą formuł.

79

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Czas trwania

45 minut

Realizacja

Sformułowanie problemu
Stefan hoduje ryby w dużym akwarium. Na początku ma 10 ryb. Każdego
dnia liczba ryb podwaja się, jeżeli jednak przekroczy 500 – ginie 9/10 z nich.
Ponieważ liczba ryb musi być wyrażona liczbą całkowitą, po każdym dniu liczbę
ryb, które zostają, należy zaokrąglić. Oblicz, ile będzie ryb po 100 dniach.
Wskaż największą i najmniejszą liczbę ryb w rozważanym okresie.

Zajęcia rozpoczynamy od przedstawienia uczestnikom problemu do rozwiązania.
Prezentujemy główną ideę oraz dokładnie omawiamy każdy warunek. Wskazane
jest, aby rozpocząć symulację, licząc ręcznie lub z wykorzystaniem kalkulatora.
Jeśli mamy do dyspozycji tablicę multimedialną, warto ją w tej części zajęć
wykorzystać. Realizujemy najpierw właściwą symulację, dopiero później
znajdujemy maksimum i minimum. Na koniec podsumowujemy całe zajęcia.

Symulacja krok po kroku
Na początku mamy 10 ryb. Drugiego dnia – i każdego następnego dnia – liczba
ryb się podwaja. Zapisujemy kolejne wartości na tablicy. Dopiero w momencie,
kiedy liczba ryb przekroczy próg 500, część ryb ginie. Po szóstym dniu jest 320
ryb, wobec tego następnego dnia jest ich 640. Ósmego dnia liczba ryb wynosi
64, gdyż 9/10 ginie.

Lista kroków
W momencie, gdy wszyscy uczestnicy rozumieją, jak powinien działać algorytm,
warto zapisać go bardziej formalnym językiem.

1.	 Przypisz w zmiennej liczba_ryb wartość 10.
2.	 Powtórz 100 razy:

•	 Jeśli liczba liczba_ryb>500, to zmiennej liczba_ryb przypisz
wartość 0,1*liczba_ryb; wartość zaokrąglij do części całkowitej.
W przeciwnym przypadku zmiennej liczba_ryb przypisz wartość
2*liczba_ryb.

3.	 Wypisz wartość zmiennej liczba_ryb.

80

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Rozwiązanie problemu w arkuszu kalkulacyjnym
Przygotowujemy arkusz, w którym będziemy przeprowadzać symulację.

Wpisujemy wartość początkową, kolejne dni, a następnie odpowiednią formułę.

Następnie formułę kopiujemy, przeciągając ją na niższe komórki. Na koniec
warto zadbać o odpowiednie sformatowanie. Ważnym elementem pracy jest
porównanie wyników otrzymanych wcześniej z tymi, które mamy w arkuszu.
Pozwala nam to ocenić poprawność rozwiązania.

Obliczenie maksimum i minimum
Podobnie jak poprzednio, najpierw wykonujemy symulację „na sucho”,
prezentując, jak działa algorytm znajdowania największego i najmniejszego
elementu. Kolejne kroki zapisujemy na tablicy, a następnie implementujemy
znajdowanie maksimum w arkuszu kalkulacyjnym. Implementacja jednak jest
tutaj dużo prostsza, gdyż korzystamy z wbudowanych funkcji min i max.

81

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Podsumowanie

Podczas zajęć przeprowadziliśmy symulację obliczeń dotyczących liczby ryb
w akwarium w określonym czasie. Zaczęliśmy od budowania modelu, potem
przeszliśmy do analizy algorytmu i próby jego zapisu w postaci listy kroków, by
dojść do obliczeń w arkuszu kalkulacyjnym. Końcowy etap pracy to testowanie.
Pokazujemy w ten sposób kolejne kroki prowadzące do rozwiązywania
problemów. Liczy się przede wszystkim pomysł rozwiązania, a narzędzia
informatyczne wspomagają jedynie ten proces.

W ramach rozszerzenia można zaproponować wykonanie symulacji
z wykorzystaniem środowiska Scratch, co stanowi ciekawe doświadczenie
dla uczestników szkolenia.

82

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Przykładowe zadania

Zadanie 1: „Przeliteruj” liczbę

Zadanie polega na wypisaniu cyfr liczby, poczynając od najmniej znaczącej,
czyli od końca. Np. dla liczby 2018 należy kolejno wypisać: 8, 1, 0 i 2.

Rozwiązując zadanie, wykorzystujemy podstawowe operacje na liczbach
całkowitych:
2018/10 = 201 reszty 8
201/10 = 20 reszty 1
20/10 = 2 reszty 0
2/10 = 0 reszty 2.

Zapisujemy algorytm w postaci listy kroków:
1.	 Wczytaj liczbę.
2.	 Dopóki liczba > 0, wykonuj:

•	 Oblicz resztę z dzielenia liczby przez 10.
•	 Wypisz resztę.
•	 Odejmij od liczby resztę z dzielenia.
•	 Podziel liczbę przez 10.

Na podstawie powyższego algorytmu możemy ułożyć skrypt w Scratchu.
Należy zwrócić uwagę, że w języku Scratch nie występuje operacja dzielenia
całkowitego, dlatego od liczby odejmujemy resztę z dzielenia.

Rysunek 12. Rozwiązanie zadania: „Przeliteruj” liczbę

83

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Zadanie 2: Największa liczba

Zadanie polega na znalezieniu największej liczby spośród kilku podanych.
Podobnie, jak w poprzednim zadaniu, najpierw zapisujemy algorytm w postaci
listy kroków. Przyjmując, że zostanie podanych pięć liczb, tworzymy następujący
algorytm:

1.	 Wczytaj liczbę.
2.	 Zapamiętaj w zmiennej największa wczytaną liczbę.
3.	 Powtórz 4 razy:

•	 Wczytaj liczbę.
•	 Jeśli jest ona większa od największa, to:

▪▪ Zapamiętaj w zmiennej największa wczytaną liczbę.
4.	 Wypisz wartość zmiennej największa.

Na podstawie powyższego algorytmu możemy ułożyć skrypt w Scratchu.

Zadanie daje wiele możliwości modyfikacji, np. wczytania, z ilu liczb poszukujemy
największej, lub poszukiwania liczby najmniejszej.

Rysunek 13. Rozwiązanie zadania: Największa liczba

84

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Zadanie 3: Szlaczki

Napisz funkcje: linia_przerywana(), gory(), mur(), po wywołaniu których
powstaną rysunki takie jak poniżej. Długości odcinków wynoszą 30.

Analizując powyższe rysunki, należy odpowiedzieć na pytanie: jaki element się
powtarza i ile razy. W pierwszym przykładzie są to odcinek i przerwa, a układ
powtarza się 7 razy. W drugim przykładzie jest to jedna góra, która powtarza się
10 razy – żółw stoi odchylony od poziomu pod kątem 45° w górę i powtarza 10
razy rysowanie odcinka do góry, obrót o 90° w prawo, rysowanie odcinka do dołu
oraz obrót o 90° w lewo. W trzecim przykładzie mamy do narysowania 10 ząbków.

1. from turtle import *

2.

3. pensize(3)

4.

5. def linia_przerywana():

6. a = 30

7. for i in range(7):

8. fd(a/2); pu(); fd(a/2); pd()

9.

10.

11. def gory():

12. a = 30

13. lt(45)

14. for i in range(10):

15. fd(a); rt(90); fd(a); lt(90)

Rysunek 14. Szlaczki

85

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

16.

17.

18. def mur():

19. a = 30

20. lt(90)

21. for i in range(10):

22. fd(a); rt(90); fd(a); rt(90)

23. fd(a); lt(90); fd(a); lt(90)

Żeby narysować powyższe rysunki, należy wywołać zdefiniowane funkcje:
linia_przerywana(), gory(), mur().

Zadanie 4: Różne wzory

Napisz funkcje: krzyzyk(), gwiazdka(), kwiatek(), po wywołaniu których
powstaną rysunki takie jak poniżej. Długości krótszych odcinków wynoszą 30,
a dłuższych 60.

Rozwiązywanie zadania zaczynamy od odpowiedzi na pytanie: jaki element się
powtarza. W pierwszym przykładzie jest to fragment złożony z trzech niepełnych
ząbków. Ten układ powtarza się 4 razy.

Rysunek 15. Różne wzory

86

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

W drugim przykładzie powtarza się bok trójkąta z wypustką. Zauważmy,
że mamy odcinki długości 30 i 60, czyli drugi z nich jest dwa razy dłuższy niż
pierwszy. Układ powtarza się 3 razy. Kąty, o jakie żółw się obraca, to 60° i 120°.

Trzeci przykład o tyle przypomina drugi, że występuje tu bok wielokąta
z wypustką. Natomiast wypustka jest skierowana do wewnątrz, a powstały
kształt przypomina pięciokąt.

1. from turtle import *

2.

3. pensize(3)

4.

5. def krzyzyk():

6. a = 30

7. lt(90)

8. for i in range(4):

9. fd(a); rt(90)

10. fd(a); lt(90)

11. fd(a); rt(90)

12. fd(a); lt(90)

13. fd(a); rt(90)

14.

15.

87

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

16. def gwiazdka():

17. a = 30

18. lt(120)

19. for i in range(3):

20. fd(2*a); rt(60)

21. fd(a); lt(120)

22. fd(a); rt(60)

23. fd(2*a); lt(120)

24.

25.

26. def kwiatek():

27. a = 30

28. for i in range(5):

29. fd(2*a); lt(60)

30. fd(a); rt(120)

31. fd(a); lt(60)

32. fd(2*a); lt(72)

Zadanie 5: Kwiat

Napisz funkcje: kwiat1(), kwiat2(), kwiat3(), po wywołaniu których
powstaną rysunki takie jak poniżej. Długość pałąka wynosi 40, a boki kwadratów
40 i 20.

W przykładzie pierwszym rysunek składa się z pałąka i klocka zbudowanego
z dwóch kwadratów: większego – ciemnoczerwonego i mniejszego – czerwonego.
Wygodnie będzie więc zdefiniować funkcję pomocniczą: klocek(). Dla każdego

Rysunek 16. Różne kwiaty

88

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

kwadratu określamy kolor wypełnienia, rozpoczynamy zamalowywanie, rysujemy
kwadrat i kończymy zamalowanie. Należy zwrócić uwagę, że najpierw rysujemy
duży kwadrat, a w następnej kolejności mały.

1. def klocek():

2. fillcolor("darkred")

3. begin_fill()

4. for i in range(4):

5. fd(40)

6. rt(90)

7. end_fill()

8.

9. fillcolor("red")

10. begin_fill()

11. for i in range(4):

12. fd(20)

13. rt(90)

14. end_fill()

Rysując wzór, korzystamy ze zdefiniowanej wcześniej funkcji: klocek().

1. def kwiat1():

2. for i in range(4):

3. fd(40)

4. klocek()

5. bk(40)

6. rt(90)

W kolejnym kroku rysujemy drugi motyw.

89

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Od poprzedniego wzoru różni się on położeniem klocka względem pałąka –
przed narysowaniem klocka i po narysowaniu dodajemy obrót.

1. def kwiat2():

2. for i in range(4):

3. fd(40)

4. lt(45)

5. klocek()

6. rt(45)

7. bk(40)

8. rt(90)

Teraz wystarczy narysować 12 elementów zamiast 4, aby otrzymać gotowe
rozwiązanie. Kąt między kolejnymi elementami wynosi 360/12. Rozwiązanie
zadania przedstawia się następująco:

1. from turtle import *

2.

3. def klocek():

4. fillcolor("darkred")

5. begin_fill()

6. for i in range(4):

7. fd(40)

8. rt(90)

9. end_fill()

10.

11. fillcolor("red")

12. begin_fill()

13. for i in range(4):

14. fd(20)

15. rt(90)

16. end_fill()

17.

18.

90

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

19. def kwiat3():

20. for i in range(12):

21. fd(40)

22. lt(45)

23. klocek()

24. rt(45)

25. bk(40)

26. rt(360/12)

Zadanie 6: Szachownica

Szachownica jest kwadratem, który składa się z parzystej liczby małych
kwadratów. Napisz funkcję: szachownica(n), po wywołaniu której zostanie
narysowany motyw taki, jak poniżej. Parametr n jest liczbą naturalną parzystą
i może przyjmować wartości od 2 do 20. Bok małego kwadratu wynosi 30.

Analizę zadania rozpoczynamy od wyodrębnienia elementu powtarzającego się.
Jest nim kwadrat, wypełniony raz niebieskim, raz białym kolorem.

Rysunek 17. Szachownica

91

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Funkcja kwad() – rysująca kwadrat – ma dwa parametry: długość boku kwadratu
i kolor jego zamalowania. Ponadto zdefiniujemy funkcję pomocniczą: skok(a, b),
po wywołaniu której żółw przesunie się bez rysowania o a do przodu i b w prawo.
Ułatwi to znacznie przemieszczanie żółwia i skróci zapis.

Rozpoczynamy od przemieszczenia żółwia w lewy dolny róg rysunku – tak,
aby wzór powstał dokładnie na środku. Główna część rozwiązania opiera się
na działaniu zagnieżdżonej pętli – n razy powtarzamy rysowanie rzędu. Kolory
kwadratu układają się naprzemiennie: raz niebieski, raz biały – w zależności od
parzystości sumy numerów wiersza i kolumny.

1. from turtle import *

2.

3.

4. def kwad(bok, kolor):

5. fillcolor(kolor)

6. begin_fill()

7. for i in range(4):

8. fd(bok)

9. rt(90)

10. end_fill()

11.

12.

13. def skok(a, b):

14. pu()

15. fd(a)

16. rt(90)

17. fd(b)

18. lt(90)

19. pd()

20.

21.

92

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

22. def szachownica(n):

23.

24. bok = 30

25. skok(-n/2*bok, -n/2*bok)

26.

27. for i in range(n):

28. for j in range(n):

29. if (i + j)%2 == 0:

30. kwad(bok, "DeepSkyBlue")

31. else:

32. kwad(bok, "White")

33. skok(bok, 0);

34. skok(-bok*n, bok)

Warto zwrócić uwagę, że przedstawione powyżej rozwiązanie jest jednym
z wielu możliwych. Można bowiem rysować np. tylko niebieskie kwadraty oraz
zewnętrzną obwódkę.

Zadanie 7: Różne ząbki

Napisz funkcje: zabki1(), zabki2(), zabki3(), zabki4(), po wywołaniu
których powstaną rysunki takie jak poniżej. Długości sąsiednich odcinków różnią
się o 10.

Rysunek 18. Różne ząbki

93

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

Pierwszy rysunek składa się z odcinków coraz to dłuższych. Pierwszy pionowy
odcinek od lewej ma długość 10, drugi 20, trzeci 30 itd. Ogólnie można
to wyrazić wzorem: 10*i, gdzie i przybiera wartości od 1 do 9.

Drugi rysunek ma pionowe odcinki coraz to krótsze, czyli najpierw 100, później
90, 80 itd. aż do 10. Podobnie jak poprzednio można to wyrazić wzorem:
10*i, przy czym i maleje – przybiera wartości od 10 do 1. Alternatywnym
rozwiązaniem jest rysowanie od prawej do lewej, które jednak utrudniłoby
wykonywanie kolejnych zadań.

Przykład trzeci to złożenie rysunku pierwszego i drugiego, a czwarty –
drugiego i pierwszego.

1. from turtle import *

2.

3.

4. def zabki1():

5. a = 10

6. for i in range(1, 10):

7. fd(a)

8. lt(90)

9. fd(a*i)

10. bk(a*i)

11. rt(90)

12.

13.

14. def zabki2():

15. a = 10

16. for i in range(10, 0, -1):

17. fd(a)

18. lt(90)

19. fd(a*i)

20. bk(a*i)

21. rt(90)

22.

23.

94

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

24. def zabki3():

25. zabki1()

26. zabki2()

27.

28.

29. def zabki4():

30. zabki2()

31. zabki1()

Zadanie 8: Sztanga

Napisz funkcję o nazwie: sztanga(n), która będzie rysowała taką sztangę, jak
na rysunku poniżej. Parametr n określa liczbę ciężarków po jednej stronie.
Może on przyjmować wartości z zakresu od 1 do 12. Grubość ciężarków wynosi
10, odstępy między ciężarkami również wynoszą 10. Wysokość pierwszego –
największego ciężarka zawsze wynosi 250, a każdy następny jest mniejszy o 20.
Szerokość sztangi jest stała i wynosi 600.

Sztanga jest symetryczna. Jeśli narysujemy odważniki po jednej stronie, możemy
skorzystać z rozwiązania i dorysować drugą stronę. W związku z tym definiujemy
pomocniczą funkcję: odwazniki(n) rysującą odważniki po jednej stronie sztangi.
Warto także zdefiniować drugą pomocniczą funkcję, która rysuje prostokąt.
Zarówno poprzeczka, jak i odważniki są prostokątami. Rysowanie prostokąta
można zaczynać od środka jednego z boków. Ułatwi to rysowanie odważników –
między jednym a drugim odważnikiem przesuwamy się o 20.

W funkcji głównej zaczynamy rysowanie od poprzeczki. Później przesuwamy
żółwia do lewej części rysunku i rysujemy odważniki. Następnie przemieszczamy

Rysunek 19. Sztanga

95

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

żółwia do prawej części, obracamy o 180° i ponownie wywołujemy funkcję
rysującą odważniki.

1. from turtle import *

2.

3. def prost(a, b):

4. # prostokąt od środka jednego boku

5. lt(90)

6. begin_fill()

7. for i in range(2):

8. fd(a/2);rt(90)

9. fd(b);rt(90)

10. fd(a/2)

11. end_fill()

12. rt(90)

13.

14. def odwazniki(n):

15. for j in range(13-n, 13):

16. fd(10)

17. prost(20*j, 10)

18. fd(10)

19. #powrot

20. fd(300-20*n)

21.

22. def sztanga(n):

23. color("blue")

24.

25. #poprzeczka

26. lt(90);bk(5)

27. prost(600, 10)

28. lt(90)

29.

30.

96

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

31. #odważniki po lewej stronie

32. fd(300);rt(180)

33. lt(90);fd(5);rt(90)

34. odwazniki(n)

35.

36.

37. #odważniki po prawej stronie

38. fd(300);rt(180)

39. odwazniki(n)

Jeśli rysowanie trwa długo, można je przyspieszyć, wywołując:
tracer(0); sztanga(6); update().

Zadanie 9: Pałac

Napisz funkcję: palac(liczba_pieter), która tworzy rysunek pałacu o danej
liczbie pięter z zakresu od 1 do 10. Długości krótkich odcinków wynoszą 20.

Pałac składa się z pięter. Tworzymy go od góry do dołu, rysując pojedynczy
poziom i przemieszczając żółwia do miejsca, w którym powinien zaczynać się
kolejny. Poziomy oznaczamy kolejno cyframi od 1 do liczby pięter.

Zauważmy, że numer poziomu oznacza jednocześnie liczbę białych elementów
występujących w jego obrębie. Do rysowania poziomu będziemy potrzebować
funkcji pomocniczej: poziom(n, bok), gdzie n – to numer poziomu, a bok –
długość krótkiego odcinka. Każdy poziom składa się z n ząbków i poprzeczek

Rysunek 20. Pałac

97

Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)

pionowych oraz długiej poprzeczki poziomej. Długości pionowych poprzeczek
wynoszą 2*bok, a poziomej 2*n*bok+bok.

1. from turtle import *

2.

3. def poziom(n, bok):

4. begin_fill()

5. for i in range(n):

6. fd(bok); lt(90)

7. fd(bok); rt(90)

8. fd(bok); rt(90)

9. fd(bok); lt(90)

10. fd(bok); lt(90)

11. fd(2*bok); lt(90)

12. fd(2*n*bok+bok); lt(90)

13. fd(2*bok); lt(90)

14. end_fill()

15.

16.

17. def palac(n):

18. bok = 20

19. fillcolor("olivedrab")

20. for i in range(1, n+1):

21. poziom(i, bok)

22. pu()

23. lt(180); fd(bok)

24. lt(90); fd(2*bok)

25. lt(90)

26. pd()

Przykładowe wywołanie: tracer(0); palac(5); update().

98

Katarzyna Olędzka

Ramowy program szkolenia dla nauczycieli
klas 4–6 (ii etap edukacyjny) – wersja skrócona

Informacje ogólne
Szkolenie jest przeznaczone dla uczestników szkolenia dotyczącego nauczania
w klasach 7–8, którzy nie ukończyli szkolenia odnoszącego się do nauczania
w klasach 4–6, ale deklarują znajomość zagadnień zawartych w jego programie.
Obejmuje ono 10 godzin lekcyjnych zajęć stacjonarnych. Nauczyciele kontynuują
doskonalenie podczas szkolenia przygotowującego do realizacji podstawy
programowej w klasach 7–8.

Szkolenie prezentuje wybrane zagadnienia z programu szkolenia dla nauczycieli
klas 4–6, wprowadzające w tematykę poruszaną na szkoleniu dotyczącym
najstarszych klas szkoły podstawowej. Obejmuje ono przede wszystkim
wprowadzenie do programowania w języku tekstowym oraz powtórzenie
i utrwalenie umiejętności budowania w języku wizualnym prostych projektów
dotyczących przetwarzania liczb naturalnych.

Wymagania wstępne stawiane uczestnikom szkolenia
Uczestnik szkolenia powinien posiadać:

•	 kompetencje wymienione w Załączniku 1;
•	 uprawnienia do nauczania przedmiotu informatyka w szkole podstawowej;
•	 umiejętności z zakresu rozwiązywania problemów algorytmicznych

z wykorzystaniem komputera, w szczególności programowania
w języku wizualnym z wykorzystaniem zdarzeń, instrukcji warunkowych
i iteracyjnych oraz korzystania ze zmiennych;

99

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

•	 doświadczenie w prowadzeniu zajęć z dziećmi na poziomie klas 4–6
w zakresie rozwiązywania problemów z wykorzystaniem wizualnego
środowiska programowania.

Cele szkolenia:
•	 przygotowanie nauczycieli do prowadzenia zajęć z informatyki z zakresu

algorytmicznego rozwiązywania problemów i programowania zgodnie
z nową postawą programową;

•	 doskonalenie własne nauczycieli w zakresie stosowania algorytmiki
i programowania, a także rozumienia pojęć informatycznych i metod
informatyki;

•	 utrwalenie umiejętności programowania w języku wizualnym;
•	 wprowadzenie podstaw programowania w języku tekstowym.

Treści nauczania:
1.	 rola algorytmicznego rozwiązywania problemów, myślenia komputacyjnego

i programowania w nowej podstawie programowej ze szczególnym
uwzględnieniem zapisów dla klas 4–6;

2.	 sterowanie obiektem za pomocą sekwencji poleceń;
3.	 poszukiwanie – w zbiorach nieuporządkowanych i uporządkowanych –

konkretnego elementu oraz elementów najmniejszego i największego;
4.	 kształtowanie zdolności algorytmicznego rozwiązywania problemów;

wyróżnianie podstawowych kroków w formułowaniu i algorytmicznym
rozwiązywaniu problemu oraz ich stosowanie w praktyce;

5.	 wprowadzenie do tekstowego języka programowania wysokiego poziomu;
6.	 testowanie, poprawianie i prezentowanie własnych programów.

Przykładowy rozkład materiału

Temat i tematy cząstkowe
Punkt
podstawy
programowej

Treści Liczba
godzin

1.	 Wprowadzenie 1

•	 Organizacja szkolenia

•	 Podstawa programowa informatyki dla
drugiego etapu edukacyjnego

całość 1 0,5

0,5

100

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

2.	 Programowanie w środowisku Scratch 2

•	 Implementujemy algorytmy obliczeniowe I.2, I.3,

II.1, II.2

1, 2, 3, 4, 6 2

3.	 Sterowanie obiektem za pomocą sekwencji poleceń 7

•	 Grafika żółwia w Pythonie – wprowadzenie

•	 Uczymy żółwia nowych słów

•	 Powtarzamy czynności

•	 Powtarzamy i podejmujemy decyzje

•	 Dzielimy problem na problemy cząstkowe

•	 Projektujemy posadzki

•	 Budujemy piramidy

•	 Rozwiązujemy zadania

I.2c, I.3,

II.1, II.2

1, 2, 3, 5, 6 0,5

0,5

1

1

1

1

1

1

Omówienie poszczególnych tematów

1.	 Wprowadzenie

Rozpoczynając szkolenie, należy omówić zasady jego organizacji oraz specyfikę
mającą na celu przygotowanie do właściwego szkolenia. Można przeprowadzić
krótką dyskusję, dlaczego warto nauczać programowania. Ponadto trzeba
omówić poszczególne zapisy dotyczące informatyki zawarte w nowej podstawie
programowej, zarówno w odniesieniu do założeń ogólnych programu,
jak i szczegółowych treści. Szczególną uwagę należy poświęcić zapisom
dotyczącym rozwiązywania problemów i nauce programowania w klasach 4–6
oraz refleksji dotyczącej tego, jakie umiejętności wynoszą uczniowie z edukacji
informatycznej w nauczaniu wczesnoszkolnym. Trzeba także przedstawić pełny
program szkolenia dla klas 4–6 oraz treści, które będą omawiane na tym szkoleniu.

2.	 Programowanie w środowisku Scratch

Zakładamy, że uczestnicy szkolenia posiadają już umiejętności i doświadczenie
z zakresu programowania wizualnego. Prawdopodobnie programowali
w środowisku Scratch. Jeśli korzystali z innego środowiska programowania
wizualnego, należy zwięźle omówić możliwości Scratcha.

101

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

2.1.	Implementujemy algorytmy obliczeniowe

✔✔ Gra logiczna – zgadywanie liczby („Mistrzowie Kodowania”)

Tworzymy grę polegającą na odgadywaniu liczby wylosowanej
przez komputer. Po każdej próbie gracz jest informowany, czy
podana przez niego liczba jest mniejsza, większa, czy równa
wartości pamiętanej przez komputer. Zabawa ma na celu
odkrycie przez gracza algorytmu postępowania prowadzącego

do jak najszybszego odgadnięcia wylosowanej liczby. Warto także przygotować
odwrotną realizację algorytmu – gracz wymyśla liczbę, a komputer zgaduje.

Następnie należy rozwiązać kilka prostych problemów obliczeniowych
i zaimplementować je w Scratchu. Celem zadań może być „przeliterowanie”
liczby, czyli wypisanie cyfra po cyfrze od końca (przykładowe zadanie 1) oraz
znalezienie największej liczby spośród podanych (przykładowe zadanie 2).

Zasoby do wykorzystania:
•	 Strona OEIiZK – Moduł VI „Zgadywanie liczby”,

(sekcja „Mistrzowie Kodowania”).

3.	 Sterowanie obiektem za pomocą sekwencji poleceń

Na tym etapie szkolenia należy zrealizować prawie cały punkt 4 programu
pełnego szkolenia (z wyjątkiem ostatnich aktywności: „Sterujemy robotem”).
Podstawowe zadania prawdopodobnie zajmą mniej czasu, dzięki nabytym już
wcześniej doświadczeniem słuchaczy.

3.1.	Grafika żółwia w Pythonie – wprowadzenie

Programowanie w języku tekstowym warto zacząć od wykorzystania grafiki żółwia
– idei wypracowanej przez Seymoura Paperta, stanowiącej podstawę języka
Logo. Motywy graficzne można również opracowywać z wykorzystaniem tego
podejścia w języku Python z biblioteką Turtle. Grafika żółwia kojarzy się głównie
z językiem Logo, ale warto zwrócić uwagę, że geometria żółwia była stosowana,
przed powstaniem języka Logo. Występuje w wielu narzędziach i środowiskach
przeznaczonych do nauki programowania dla dzieci, np. w Scratchu (projekty
z wykorzystaniem pióra) czy „Godzinie Kodowania” (chociaż niekoniecznie używa się
w nich nazwy „grafika żółwia”). Została także wykorzystana na tym szkoleniu.

http://programowanie.oeiizk.edu.pl/#!/

102

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Jakie cechy tego podejścia sprawiają, że można z jego pomocą uczyć
programowania nawet małe dzieci? Należy wskazać na trzy istotne aspekty:

•	 proste i konkretne, a przez to zrozumiałe polecenia, zbliżone do języka
naturalnego – „idź naprzód o… kroków”, „obróć się o kąt…”, „podnieś pisak” itp.;

•	 postać żółwia – graficzny symbol, który pozwala dziecku wyobrazić sobie
wykonawcę algorytmu zapisanego w języku programowania;

•	 semantyka operacyjna – uczeń obserwuje działanie stworzonych przez
siebie programów. Interpretacja kodu powoduje na ekranie efekt, który
dość łatwo ocenić pod względem zgodności ze wzorcem. Widząc, jak żółw
rysuje, uczeń sprawdza, czy wykonuje zadanie prawidłowo, może zatem
znaleźć ewentualny błąd.

Podstawowe komendy:

Polecenie Wyjaśnienie

fd(n) forward – przesunięcie żółwia w aktualnym kierunku o n kroków

bk(n) backward – przesunięcie żółwia przeciwnie do aktualnego kierunku o n kroków

rt(alfa) right – obrót żółwia w prawo o kąt alfa

lt(alfa) left – obrót żółwia w lewo o kąt alfa

pu() pen up – żółw podnosi pisak, czyli nie rysuje podczas przemieszczania się

pd() pen down – żółw opuszcza pisak, czyli rysuje podczas przemieszczania się

Importowanie biblioteki Turtle: from turtle import *

Zaczynamy pracę w języku Python od prostych obliczeń w trybie interaktywnym,
następnie wprowadzamy proste zadania graficzne – np.: rysowanie stołu, krzesła,
mostu, domu, itp., tworząc ciąg poleceń w pliku.

Rysunek 1. Przykładowe rysunki

103

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Zasoby do wykorzystania:
¨¨ Jochemczyk W., Olędzka K., (2013), Python dla wszystkich, Toruń:

Informatyka w Edukacji, (zakładka „O Pythonie”);
¨¨ Film Pythonowe początki;
¨¨ Materiały na stronie: http://python.oeiizk.edu.pl,

(zakładka: „Rysowanie z żółwiem”).

3.2.	Uczymy żółwia nowych słów

Kod złożony z fragmentów stanowiących logiczną całość warto podzielić
na pojedyncze funkcje. Dzięki temu możemy wielokrotnie wykorzystać dany kod,
a cały program staje się bardziej zwięzły i przejrzysty.

Uczestnicy szkolenia powinni spróbować narysować dobrze znane przedmioty.
Najlepiej zacząć od rysunków, które zawierają tylko kąty proste, gdyż ich
wykonanie jest łatwiejsze dla uczniów, a następnie przejść do wykorzystania
także innych kątów. Pewną trudność mogą też stanowić rysunki, w których
występują nietypowe długości odcinków – np. przekątna kwadratu. Uczestnicy
powinni wykonać również swoje własne rysunki. Na początkowym etapie
uczniowie chętniej rysują motywy konkretne niż abstrakcyjne wzory.
Poniżej przykładowy rysunek (uwaga: nieco pracochłonny).

3.3.	Powtarzamy czynności

Najlepiej zacząć od narysowania kwadratu, najpierw ręcznie – zapisując wszystkie
instrukcje (i od razu je grupując), a później z wykorzystaniem instrukcji for.
Następnie można przejść do tworzenia innych wielokątów foremnych: trójkąta,

Rysunek 2. Efekt wywołania funkcji kot()

http://python.oeiizk.edu.pl/
http://python.oeiizk.edu.pl/
https://www.youtube.com/watch?v=n-mFQ2JqO8o

104

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

pięciokąta, sześciokąta itd. Chociaż pierwsze rysunki na pewno będą powstawać
metodą prób i błędów, należy omówić, jak wyliczyć kąty.

Instrukcja iteracji jest bardzo ważna w nauce programowania i nie można tego
tematu zlekceważyć. Trzeba poświęcić odpowiednią ilość czasu na ćwiczenia.
Zaczynamy od prostych przykładów, na których wyraźnie widać, jakie
elementy się powtarzają. Następnie można przejść do trochę trudniejszych,
by dobrze wyćwiczyć umiejętność stosowania instrukcji iteracji. Można też
nawiązać do programowania w Scratchu i bloczka „powtórz”.

Pierwszą grupę przykładowych zadań stanowią różnego rodzaju szlaczki.

Drugą grupę czynności tworzą różnego rodzaju motywy, w których rysowanie
zaczyna i kończy się w tym samym miejscu.

Rysunek 3. Szlaczki (przykładowe zadanie 3)

Rysunek 4. Różne wzory (przykładowe zadanie 4)

105

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Dla urozmaicenia warto stworzone motywy wzbogacić o kolory.

3.4.	Powtarzamy i podejmujemy decyzje

W dalszej części szkolenia można wprowadzić modyfikacje do wzorów
powtarzalnych. W zależności od tego, po raz który jest wykonywana pętla,
element powtarzalny może być zupełnie inny lub różnić się jedynie parametrem.

✔✔ Przykładowy scenariusz – Rysowanie grzebieni

3.5.	Dzielimy problem na problemy cząstkowe

Jeśli w danym motywie występują figury podobne do siebie – różnej wielkości,
koloru lub o równej liczbie elementów powtarzających się – można napisać
funkcję z parametrem. Przypuśćmy, że chcemy narysować mały kwadrat,
średni kwadrat oraz duży kwadrat, należy wówczas zdefiniować jedną funkcję
z parametrem: kwadrat(bok). Funkcję z parametrami definiuje się analogicznie
jak bezparametrową. Jedyna różnica polega na wymienieniu w nagłówku funkcji
wszystkich jej parametrów. Parametry oddzielamy przecinkami.

Rysunek 5. Efekt wywołania funkcji kwiat() (przykładowe zadanie 5)

106

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Przykład zadania:

3.6.	Projektujemy posadzki

Po rozwiązaniu prostszych zadań z wykorzystaniem iteracji, należy przejść
do bardziej skomplikowanych. Są to zadania typu „posadzka”, w których
jeden element powtarzany jest wiele razy. Wykonując je, mamy do czynienia
z zagnieżdżonymi pętlami. Rozwiązanie można zapisać na wiele sposobów.

Rysunek 6. Przykład motywu, w którym należy zdefiniować funkcję z parametrem

Rysunek 7. Posadzka (przykładowe zadanie 6)

107

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

3.7.	Budujemy piramidy

Ostatnią – najtrudniejszą – grupę zadań stanowią te oparte na wykorzystaniu
wartości zmiennej sterującej pętli for. Należy zacząć od prostych realizacji
polegających na rysowaniu odcinków, prostokątów lub innych figur –
od najmniejszej do największej lub na odwrót.

Podobnie jak poprzednio – dla uatrakcyjnienia rysowanych motywów warto
dodać kolory.

Trudniejsze przykłady wymagają napisania kilku funkcji. Kilka takich zadań
powinno się zrealizować na zajęciach z nauczycielami, by potem mogli
w analogiczny sposób pracować ze zdolną młodzieżą.

Rysunek 9. Przykłady rysunków z wykorzystaniem zmiennej sterującej pętli
(przykładowe zadania 8 i 9)

Rysunek 8. Różne „ząbki” (przykładowe zadanie 7)

108

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

3.8.	Rozwiązujemy zadania

Uczniowie, rozwiązując proste problemy, poznają polecenia języka
programowania i utrwalają ich znajomość. Następnie powinni przystąpić
do rozwiązywania bardziej złożonych zadań. Niekoniecznie muszą one dotyczyć
trudniejszych zagadnień – na to przyjdzie czas w klasach starszych. Uczniowie
dowiadują się, jak dzielić problem na problemy cząstkowe i stosować nowe
umiejętności w sytuacjach typowych oraz mniej typowych. Możemy też omówić
technikę projektowania algorytmów (top-down) i ich implementacji (bottom-up).
Trzeba pamiętać, że są to pierwsze kroki uczniów w obszarze programowania,
dlatego nie powinni czuć się przytłoczeni. Inaczej jest, gdy prowadzimy zajęcia
dla nauczycieli – trzeba zadbać, by mieli szersze spojrzenie.

Po wykonaniu kilku zadań omawiamy etapy rozwiązywania problemów
informatycznych. Jest to dopiero początek na drodze do poznawania algorytmiki,
ale warto już na tym etapie kształtować prawidłowe myślenie. Omawiamy
kolejno, na czym polegają opis i analiza sytuacji problemowej, sporządzanie
specyfikacji problemu, projektowanie rozwiązania, komputerowa realizacja
rozwiązania oraz jego testowanie i prezentacja. Szczególnie należy podkreślić,
że przy wykonywaniu konkretnego zadania najpierw trzeba przemyśleć sposób
jego rozwiązania, a dopiero później zacząć pisać kod. Wiele spośród zadań można
bowiem rozwiązać za pomocą różnych metod.

Rysunek 10. Przykłady trudniejszych zadań

109

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

W nauce programowania bardzo istotne jest testowanie.
Przede wszystkim staramy się na bieżąco reagować na błędy – najczęściej
wychwytujemy błędy syntaktyczne. Po zakończeniu pisania kodu, powinniśmy
również skrupulatnie przetestować nasze rozwiązanie, gdyż błędy logiczne są
dużo trudniejsze do wykrycia. Każde zadanie sprawdzamy, przyjmując wartości
brzegowe parametrów i kilku pośrednich. Jeśli możliwych wartości parametrów
jest niewiele, zaleca się przeprowadzenie testowania dla wszystkich.

Skąd czerpać pomysły na zadania? Po pierwsze z życia codziennego. Uczniowie
chętniej zajmują się problemami, które uważają za bliskie. Można też skorzystać
z różnych serwisów, są one jednak adresowane głównie do uczniów starszych.
Niektóre z nich mogą być wykorzystywane w nauce na poziomie szkoły
podstawowej. Na stronach Przedmiotowego Konkursu Informatycznego
„miniLOGIA” dla uczniów szkół podstawowych województwa mazowieckiego
zamieszczono wiele zadań graficznych (http://minilogia.oeiizk.waw.pl) –
znajdują się wśród nich zarówno prostsze, jak i trudniejsze, można więc dobrać
zadania do poziomu uczniów. Zadania o wyższym stopniu trudności można też
znaleźć na stronie konkursu „LOGIA” dla uczniów klas gimnazjalnych
(http://logia.oeiizk.waw.pl).

Zasoby do wykorzystania:
¨¨ Strona konkursu „miniLOGIA”: http://minilogia.oeiizk.waw.pl;
¨¨ Strona konkursu „LOGIA”: http://logia.oeiizk.waw.pl;
¨¨ Strona konkursu „Bóbr”: http://www.bobr.edu.pl;
¨¨ Strona projektu „Godzina Kodowania”: https://code.org.

110

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Przykładowy scenariusz zajęć

Scenariusz 1 – Rysujemy grzebienie

Opis zajęć

Głównym celem zajęć jest nauka powtarzania czynności oraz podejmowania
decyzji. Uczniowie nabywają tych umiejętności i utrwalają je podczas realizacji
zadania: Grzebienie – które zapisują i uruchamiają w języku Python.

Czas trwania

45 minut

Realizacja

Zaczynamy od narysowania grzebienia mającego ząbki jednakowej wysokości.
Następnie wprowadzamy modyfikacje – co drugi lub co trzeci ząbek musi być
inny. Na kolejnym etapie zajęć uczestnicy przygotowują dla siebie nawzajem
grzebienie – zagadki. W ten sposób każdy ma możliwość, by zaprojektować swój
własny wzór, ale także aby opisać wzór wymyślony przez innego uczestnika.

✔✔ Zadanie: Grzebień prosty

Zdefiniuj funkcję: grzebien(ile), po wywołaniu której powstanie rysunek
grzebienia składającego się z trzonka oraz identycznych ząbków. Liczbę ząbków
określa parametr ile, który może przyjmować wartości od 2 do 20. Długość
trzonka wynosi 60, odległości między ząbkami 10, a wysokość ząbków 20.

Zauważmy, że wszystkie odległości są wielokrotnościami 10, dlatego warto
zdefiniować zmienną pomocniczą a, która pozwoli określić proporcje: trzonek będzie
miał długość 6*a, odstęp między ząbkami a, natomiast wysokość ząbków 2*a.

grzebien(7) grzebien(10)

111

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Najpierw żółw przesuwa się o długość trzonka pomniejszoną o a, gdyż ten
odcinek rysujemy razem z pierwszym ząbkiem. Później kolejno przesuwamy
żółwia i rysujemy ząbki. Pojedynczy krok składa się z przesunięcia o a, obrotu
w lewo o 90°, przesunięcia wprzód o 2*a, wycofania się i obrotu w prawo o 90°.

1. from turtle import *

2.

3. def grzebien(ile):

4. a = 10

5. fd(5*a)

6. for i in range(ile):

7. fd(a)

8. lt(90)

9. fd(2*a)

10. bk(2*a)

11. rt(90)

✔✔ Zadanie: Co drugi ząbek krótszy

Zdefiniuj funkcję: co_drugi(ile), po wywołaniu której powstanie rysunek
grzebienia składającego się z trzonka oraz ząbków. Parametr ile określa
liczbę ząbków. Ząbki mają na przemian wysokość 10 i 20. Parametr ile może
przyjmować wartości od 2 do 20. Długość trzonka wynosi 60, a odległości
między ząbkami 10.

Rozwiązując to zadanie, modyfikujemy funkcję napisaną poprzednio. Jedyną
zmianą, jaką wprowadzamy, jest rysowanie raz wyższego, raz niższego ząbka.
Uzależniamy to od wartości zmiennej sterującej pętlą i. Kolejne wartości
zmiennej i to: 0, 1, 2, 3, 4 i tak dalej, aż do ile-1 – wobec czego możemy
rozpatrzyć resztę z dzielenia przez 2. Dla liczby parzystej otrzymamy resztę 0,
a dla nieparzystej 1. Pozwoli to na zapisanie warunku, który będzie określał
wysokość ząbka.

co_drugi(7) co_drugi(10)

112

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

1. def co_drugi(ile):

2. a = 10

3. fd(5*a)

4. for i in range(ile):

5. fd(a)

6. lt(90)

7. if i % 2 == 1:

8. fd(2*a)

9. bk(2*a)

10. else:

11. fd(a)

12. bk(a)

13. rt(90)

✔✔ Zadanie: Co trzeci ząbek wyższy

W kolejnym kroku utrudniamy zadanie – teraz co trzeci ząbek musi być wyższy.

1. def co_trzeci(ile):

2. a = 10

3. fd(5*a)

4. for i in range(ile):

5. fd(a)

6. lt(90)

7. if i % 3 == 2:

8. fd(2*a)

9. bk(2*a)

10. else:

11. fd(a)

12. bk(a)

13. rt(90)

co_trzeci(7) co_trzeci(10)

113

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

✔✔ Zadanie: Projektujemy własne wzory

Kolejnym zadaniem, jakie stawiamy przed uczestnikami, jest zaprojektowanie
własnego wzoru. Korzystając z wcześniej napisanych programów i modyfikując je,
projektujemy inne wzory. Następnie uczestnicy wymieniają się pomysłami i próbują
wzajemnie odtworzyć zaprojektowane przez siebie wzory. Pozwala to z jednej
strony na kreatywność, a z drugiej na rozwijanie różnych umiejętności – analizy
rysunku, modyfikowania kodu programu, testowania.

Podsumowanie

W czasie zajęć koncentrujemy się na opisaniu w języku programowania
zależności, uwidocznionych na rysunku. Analizujemy motyw, by sformułować
zależność, a następnie zapisać ją w języku Python. Ćwiczymy rozwiązanie
problemu z zastosowaniem instrukcji iteracji i instrukcji warunkowej. Uczestnicy
poznali te konstrukcje, wykonując zadania wymagające użycia Scratcha i arkusza
kalkulacyjnego.

Podczas programowania warto zwrócić uwagę na błędy popełniane przy pisaniu
programów. Trzeba nie tylko pomóc je odszukać i poprawić, ale także pokazać,
jak je wyszukiwać. Często początkujący programiści mają z tym problem.

Naturalne rozszerzanie projektu opiera się na dodawaniu wzorów kolorowych.
Można zatem zaproponować inny regularnie powtarzający się motyw i rozszerzyć go.

114

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Przykładowe zadania

Zadanie 1: „Przeliteruj” liczbę

Zadanie polega na wypisaniu cyfr liczby, poczynając od najmniej znaczącej, czyli
od końca. Np. dla liczby 2018 należy kolejno wypisać: 8, 1, 0 i 2.

Rozwiązując zadanie, wykorzystujemy podstawowe operacje na liczbach całkowitych:
2018/10 = 201 reszty 8
201/10 = 20 reszty 1
20/10 = 2 reszty 0
2/10 = 0 reszty 2

Zapisujemy algorytm w postaci listy kroków:
1.	 Wczytaj liczbę.
2.	 Dopóki liczba > 0, wykonuj:

•	 Oblicz resztę z dzielenia liczby przez 10.
•	 Wypisz resztę.
•	 Odejmij od liczby resztę z dzielenia.
•	 Podziel liczbę przez 10.

Na podstawie powyższego algorytmu możemy ułożyć skrypt w Scratchu.
Należy zwrócić uwagę, że w języku Scratch nie występuje operacja dzielenia
całkowitego, dlatego od liczby odejmujemy resztę z dzielenia.

Rysunek 11. Rozwiązanie zadania: „Przeliteruj” liczbę

115

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Zadanie 2: Największa liczba

Zadanie polega na znalezieniu największej liczby spośród kilku podanych. Podobnie
jak w poprzednim zadaniu, najpierw zapisujemy algorytm w postaci listy kroków.
Przyjmując, że zostanie podanych pięć liczb, tworzymy następujący algorytm:

1.	 Wczytaj liczbę.
2.	 Zapamiętaj w zmiennej największa wczytaną liczbę.
3.	 Powtórz 4 razy:

•	 Wczytaj liczbę.
•	 Jeśli jest ona większa od największa, to:

▪▪ Zapamiętaj w zmiennej największa wczytaną liczbę.
4.	 Wypisz wartość zmiennej największa.

Na podstawie powyższego algorytmu możemy ułożyć skrypt w Scratchu.

Zadanie daje wiele możliwości wprowadzenia modyfikacji, np. wczytania, z ilu
liczb poszukujemy największej, czy poszukiwania liczby najmniejszej.

Rysunek 12. Rozwiązanie zadania: Największa liczba

116

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Zadanie 3: Szlaczki

Napisz funkcje: linia_przerywana(), gory(), mur(), po wywołaniu których
powstaną rysunki takie jak poniżej. Długości odcinków wynoszą 30.

Analizując powyższe rysunki, trzeba odpowiedzieć na pytanie: jakie elementy się
powtarzają i ile razy. W pierwszym przykładzie są to odcinek i przerwa. Ten układ
powtarza się 7 razy. W drugim przykładzie jest to jedna góra, która powtarza się
10 razy – żółw stoi odchylony od poziomu pod kątem 45° w górę i powtarza
10 razy rysowanie odcinka do góry, obrót o 90° w prawo, rysowanie odcinka do dołu
oraz obrót o 90° w lewo. W trzecim przykładzie mamy do narysowania 10 ząbków.

1. from turtle import *

2.

3. pensize(3)

4.

5. def linia_przerywana():

6. a = 30

7. for i in range(7):

8. fd(a/2); pu(); fd(a/2); pd()

9.

10.

11. def gory():

12. a = 30

13. lt(45)

14. for i in range(10):

15. fd(a); rt(90); fd(a); lt(90)

Rysunek 13. Szlaczki

117

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

16.

17.

18. def mur():

19. a = 30

20. lt(90)

21. for i in range(10):

22. fd(a); rt(90); fd(a); rt(90)

23. fd(a); lt(90); fd(a); lt(90)

Żeby narysować powyższe rysunki, należy wywołać zdefiniowane funkcje:
linia_przerywana(), gory(), mur().

Zadanie 4: Różne wzory

Napisz funkcje: krzyzyk(), gwiazdka(), kwiatek(), po wywołaniu których
powstaną rysunki takie jak poniżej. Długość krótszych odcinków wynosi 30,
a dłuższych 60.

Rozwiązywanie zadania zaczynamy od odpowiedzi na pytanie: jaki element się
powtarza. W pierwszym przykładzie jest to fragment złożony z trzech niepełnych
ząbków. Ten układ powtarza się 4 razy.

Rysunek 14. Różne wzory

118

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

W drugim przykładzie powtarza się bok trójkąta z wypustką. Zauważmy,
że mamy odcinki o długości 30 i 60, czyli drugi z nich jest dwa razy dłuższy niż
pierwszy. Układ powtarza się 3 razy. Kąty, o jakie żółw się obraca, to 60° i 120°.

Trzeci przykład o tyle przypomina drugi, że występuje tu bok wielokąta
z wypustką. Natomiast wypustka jest skierowana do wewnątrz, a powstały
kształt przypomina pięciokąt.

1. from turtle import *

2.

3. pensize(3)

4.

5. def krzyzyk():

6. a = 30

7. lt(90)

8. for i in range(4):

9. fd(a); rt(90)

10. fd(a); lt(90)

11. fd(a); rt(90)

12. fd(a); lt(90)

13. fd(a); rt(90)

14.

15.

119

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

16. def gwiazdka():

17. a = 30

18. lt(120)

19. for i in range(3):

20. fd(2*a); rt(60)

21. fd(a); lt(120)

22. fd(a); rt(60)

23. fd(2*a); lt(120)

24.

25.

26. def kwiatek():

27. a = 30

28. for i in range(5):

29. fd(2*a); lt(60)

30. fd(a); rt(120)

31. fd(a); lt(60)

32. fd(2*a); lt(72)

Zadanie 5: Kwiat

Napisz funkcje: kwiat1(), kwiat2(), kwiat3(), po wywołaniu których powstają
rysunki takie jak poniżej. Długość pałąka wynosi 40, a boki kwadratów 40 i 20.

W przykładzie pierwszym rysunek składa się z pałąka i klocka zbudowanego
z dwóch kwadratów: większego (ciemnoczerwonego) i mniejszego (czerwonego).
Wygodnie będzie więc zdefiniować funkcję pomocniczą: klocek(). Dla każdego

Rysunek 15. Różne kwiaty

120

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

kwadratu ustawiamy kolor wypełnienia, rozpoczynamy zamalowywanie, rysujemy
kwadrat i kończymy zamalowanie. Należy zwrócić uwagę, że najpierw rysujemy
duży kwadrat, a w następnej kolejności mały.

1. def klocek():

2. fillcolor("darkred")

3. begin_fill()

4. for i in range(4):

5. fd(40)

6. rt(90)

7. end_fill()

8.

9. fillcolor("red")

10. begin_fill()

11. for i in range(4):

12. fd(20)

13. rt(90)

14. end_fill()

Rysując wzór, korzystamy ze zdefiniowanej wcześniej funkcji: klocek().

1. def kwiat1():

2. for i in range(4):

3. fd(40)

4. klocek()

5. bk(40)

6. rt(90)

W kolejnym kroku rysujemy drugi motyw.

121

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Od poprzedniego wzoru różni się on położeniem klocka względem pałąka –
przed narysowaniem klocka i po narysowaniu dodajemy obrót.

1. def kwiat2():

2. for i in range(4):

3. fd(40)

4. lt(45)

5. klocek()

6. rt(45)

7. bk(40)

8. rt(90)

Teraz wystarczy narysować 12 elementów zamiast 4, aby otrzymać gotowe
rozwiązanie. Kąt między elementami wynosi 360/12. Rozwiązanie zadania
przedstawia się następująco:

1. from turtle import *

2.

3. def klocek():

4. fillcolor("darkred")

5. begin_fill()

6. for i in range(4):

7. fd(40)

8. rt(90)

9. end_fill()

10.

11. fillcolor("red")

12. begin_fill()

13. for i in range(4):

14. fd(20)

15. rt(90)

16. end_fill()

17.

18.

122

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

19. def kwiat3():

20. for i in range(12):

21. fd(40)

22. lt(45)

23. klocek()

24. rt(45)

25. bk(40)

26. rt(360/12)

Zadanie 6: Szachownica

Szachownica jest kwadratem, który składa się z parzystej liczby małych
kwadratów. Napisz funkcję: szachownica(n), po wywołaniu której zostanie
narysowany motyw taki, jak poniżej. Parametr n jest liczbą naturalną parzystą
i może przyjmować wartości od 2 do 20. Bok małego kwadratu wynosi 30.

Analizę zadania rozpoczynamy od wyodrębnienia elementu powtarzającego się.
Jest nim kwadrat, wypełniony raz niebieskim, raz białym kolorem. Funkcja:
kwad() – rysująca kwadrat – ma dwa parametry: długość boku kwadratu i kolor
jego zamalowania. Ponadto zdefiniujemy funkcję pomocniczą: skok(a, b),
po wywołaniu której żółw przesunie się bez rysowania o a do przodu i b w prawo.
Ułatwi to znacznie przemieszczanie żółwia i skróci zapis.

Rozpoczynamy od przemieszczenia żółwia w lewy dolny róg rysunku – tak, aby
wzór powstał dokładnie na środku. Główna część rozwiązania zadania opiera się
na działaniu zagnieżdżonej pętli – n razy powtarzamy rysowanie rzędu.

Rysunek 16. Szachownica

123

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Kolory kwadratu układają się naprzemiennie: raz niebieski, raz biały –
w zależności od parzystości sumy numerów wiersza i kolumny.

1. from turtle import *

2.

3.

4. def kwad(bok, kolor):

5. fillcolor(kolor)

6. begin_fill()

7. for i in range(4):

8. fd(bok)

9. rt(90)

10. end_fill()

11.

12.

13. def skok(a, b):

14. pu()

15. fd(a)

16. rt(90)

17. fd(b)

18. lt(90)

19. pd()

20.

21.

22. def szachownica(n):

23.

24. bok = 30

25. skok(-n/2*bok, -n/2*bok)

26.

27. for i in range(n):

28. for j in range(n):

29. if (i + j)%2 == 0:

30. kwad(bok, "DeepSkyBlue")

31. else:

32. kwad(bok, "White")

33. skok(bok, 0);

34. skok(-bok*n, bok)

124

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Warto zwrócić uwagę, że przedstawione powyżej rozwiązanie jest jednym
z wielu możliwych. Można bowiem rysować np. tylko niebieskie kwadraty oraz
zewnętrzną obwódkę.

Zadanie 7: Różne ząbki

Napisz funkcje: zabki1(), zabki2(), zabki3(), zabki4(), po wywołaniu
których powstaną rysunki takie jak poniżej. Długości sąsiednich odcinków różnią
się o 10.

Pierwszy rysunek składa się z odcinków coraz to dłuższych. Pierwszy pionowy
odcinek od lewej ma długość 10, drugi 20, trzeci 30, itd. Ogólnie można
to wyrazić wzorem: 10*i, gdzie i przybiera wartości od 1 do 9.

Drugi rysunek ma pionowe odcinki coraz to krótsze, czyli najpierw 100,
następnie 90, 80 itd. aż do 10. Podobnie jak poprzednio można to wyrazić
wzorem: 10*i, przy czym i teraz maleje – przybiera wartości od 10 do 1.
Alternatywnym rozwiązaniem jest rysowanie od prawej do lewej, które
jednak utrudniłoby wykonywanie kolejnych zadań. Przykład trzeci opiera się
na złożeniu rysunku pierwszego i drugiego, a czwarty – drugiego i pierwszego.

Rysunek 17. Różne ząbki

125

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

1. from turtle import *

2.

3.

4. def zabki1():

5. a = 10

6. for i in range(1, 10):

7. fd(a)

8. lt(90)

9. fd(a*i)

10. bk(a*i)

11. rt(90)

12.

13.

14. def zabki2():

15. a = 10

16. for i in range(10, 0, -1):

17. fd(a)

18. lt(90)

19. fd(a*i)

20. bk(a*i)

21. rt(90)

22.

23.

24. def zabki3():

25. zabki1()

26. zabki2()

27.

28.

29. def zabki4():

30. zabki2()

31. zabki1()

126

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Zadanie 8: Sztanga

Napisz funkcję o nazwie: sztanga(n), która będzie rysowała taką sztangę,
jak na rysunku poniżej. Parametr n określa liczbę ciężarków po jednej stronie.
Może on przyjmować wartości z zakresu od 1 do 12. Grubość ciężarków wynosi
10, odstępy między ciężarkami również wynoszą 10. Wysokość pierwszego –
największego ciężarka zawsze wynosi 250, a każdy następny jest mniejszy o 20.
Sztanga ma stałą szerokość wynoszącą 600.

Sztanga jest symetryczna. Jeśli narysujemy odważniki po jednej stronie, możemy
skorzystać z rozwiązania i dorysować drugą stronę. W związku z tym definiujemy
pomocniczą funkcję: odwazniki(n) rysującą odważniki po jednej stronie sztangi.
Warto także zdefiniować drugą pomocniczą funkcję, która rysuje prostokąt.
Zarówno poprzeczka, jak i odważniki są prostokątami. Rysowanie prostokąta
można zaczynać od środka jednego z boków. Ułatwi to rysowanie odważników –
między jednym, a drugim odważnikiem będziemy się przesuwać o 20.

W funkcji głównej zaczynamy rysowanie od poprzeczki. Później przesuwamy
żółwia do lewej części rysunku i rysujemy odważniki. Następnie przemieszczamy
żółwia do prawej części rysunku, obracamy o 180° i ponownie wywołujemy
funkcję rysującą odważniki.

Rysunek 18. Sztanga

127

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

1. from turtle import *

2.

3. def prost(a, b):

4. # prostokąt od środka jednego boku

5. lt(90)

6. begin_fill()

7. for i in range(2):

8. fd(a/2);rt(90)

9. fd(b);rt(90)

10. fd(a/2)

11. end_fill()

12. rt(90)

13.

14. def odwazniki(n):

15. for j in range(13-n, 13):

16. fd(10)

17. prost(20*j, 10)

18. fd(10)

19. #powrot

20. fd(300-20*n)

21.

22. def sztanga(n):

23. color("blue")

24.

25. #poprzeczka

26. lt(90);bk(5)

27. prost(600, 10)

28. lt(90)

29.

30.

31. #odważniki po lewej stronie

32. fd(300);rt(180)

33. lt(90);fd(5);rt(90)

34. odwazniki(n)

35.

36.

37. #odważniki po prawej stronie

38. fd(300);rt(180)

39. odwazniki(n)

128

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

Jeśli rysowanie trwa długo, można je przyspieszyć, wywołując:
tracer(0); sztanga(6); update().

Zadanie 9: Pałac

Napisz funkcję: palac(liczba_pieter), która tworzy rysunek pałacu o danej
liczbie pięter z zakresu od 1 do 10. Długości krótkich odcinków wynoszą 20.

Pałac składa się z pięter. Tworzymy go od góry do dołu, rysując pojedynczy
poziom i przemieszczając żółwia do miejsca, gdzie powinien zaczynać się kolejny.
Poziomy oznaczamy kolejno cyframi od 1 do liczby pięter.

Zauważmy, że numer poziomu oznacza jednocześnie liczbę białych elementów
występujących w jego obrębie. Do rysowania poziomu będziemy potrzebować
funkcji pomocniczej poziom(n, bok), gdzie n – to numer poziomu, a bok –
długość krótkiego odcinka. Każdy poziom składa się z n ząbków i poprzeczek
pionowych oraz długiej poprzeczki poziomej. Długości pionowych poprzeczek
wynoszą 2*bok, a poziomej 2*n*bok+bok.

Rysunek 19. Pałac

129

Ramowy program szkolenia dla nauczycieli klas 4–6 (II ETAP EDUKACYJNY) – WERSJA SKRÓCONA

1. from turtle import *

2.

3. def poziom(n, bok):

4. begin_fill()

5. for i in range(n):

6. fd(bok); lt(90)

7. fd(bok); rt(90)

8. fd(bok); rt(90)

9. fd(bok); lt(90)

10. fd(bok); lt(90)

11. fd(2*bok); lt(90)

12. fd(2*n*bok+bok); lt(90)

13. fd(2*bok); lt(90)

14. end_fill()

15.

16.

17. def palac(n):

18. bok = 20

19. fillcolor("olivedrab")

20. for i in range(1, n+1):

21. poziom(i, bok)

22. pu()

23. lt(180); fd(bok)

24. lt(90); fd(2*bok)

25. lt(90)

26. pd()

Przykładowe wywołanie: tracer(0); palac(5); update().

130

Krzysztof Chechłacz

Ramowy program szkolenia dla nauczycieli
klas 7–8 (ii etap edukacyjny)

Informacje ogólne
Szkolenie jest przeznaczone dla nauczycieli informatyki uczących lub planujących
nauczać w szkołach podstawowych. Jego główny cel stanowi przygotowanie
nauczycieli do realizacji nowej podstawy programowej przedmiotu informatyka
w szkole podstawowej w zakresie algorytmicznego rozwiązywania problemów
oraz programowania na poziomie klas 7 i 8. Szkolenie obejmuje 40 godzin
lekcyjnych zajęć stacjonarnych.

Zajęcia powinny mieć charakter przede wszystkim warsztatowy – uczestnicy
pod nadzorem prowadzącego samodzielnie rozwiązują problemy, w szczególności
wcielają się w rolę ucznia. Część zajęć należy przeznaczyć na wykład i dyskusję
oraz omówienie zagadnień metodycznych. Praca praktyczna pozwoli słuchaczom
nabrać biegłości w posługiwaniu się narzędziami i metodami informatycznymi.
Nie mniej ważna jest również refleksja pedagogiczna – w jakim celu wprowadzamy
dane zagadnienia, jak zorganizować proces dydaktyczny, na co szczególnie zwrócić
uwagę i jakie mogą wystąpić trudności. Podczas zajęć nie tylko prowadzący dzielą
się swoją wiedzą, ale także słuchacze wymieniają się doświadczeniami.

Wymagania wstępne stawiane uczestnikom szkolenia
Uczestnik szkolenia powinien posiadać kompetencje wymienione w Załączniku 1,
a ponadto:

•	 posiadać uprawnienia do nauczania przedmiotu informatyka w szkole
podstawowej;

•	 posiadać wiedzę i umiejętności realizowane na szkoleniu dla nauczycieli
informatyki szkół podstawowych w zakresie nauki programowania

131

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

w klasach 4–6 szkoły podstawowej – ukończone 40-godzinne szkolenie
lub ukończone 10-godzinne szkolenie wstępne (jeśli uczestnik deklaruje
znajomość zagadnień z zakresu programu szkolenia dla klas 4–6).

Cele szkolenia:
•	 przygotowanie nauczycieli do prowadzenia zajęć z informatyki zgodnie

z nową postawą programową w zakresie algorytmicznego rozwiązywania
problemów i programowania;

•	 doskonalenie własne nauczycieli w zakresie algorytmiki i programowania,
a także rozumienia pojęć informatycznych i metod informatyki;

•	 rozwijanie u uczniów umiejętności myślenia komputacyjnego
i rozwiązywania problemów z życia codziennego przy pomocy narzędzi
informatycznych;

•	 nabycie umiejętności programowania w języku tekstowym wysokiego
poziomu w zakresie umożliwiającym realizację podstawy programowej
przedmiotu informatyka w klasach 7–8 szkoły podstawowej.

Treści nauczania:
1.	 Rola algorytmicznego rozwiązywania problemów, myślenia

komputacyjnego i programowania w nowej podstawie programowej
ze szczególnym uwzględnieniem zapisów dotyczących klas 7–8.
Wprowadzenie do myślenia abstrakcyjnego.

2.	 Kształtowanie umiejętności algorytmicznego rozwiązywania problemów.
Wyróżnianie podstawowych kroków w formułowaniu i algorytmicznym
rozwiązywaniu problemu oraz ich stosowanie w praktyce (od sformułowania
i specyfikacji problemu po zaprogramowanie i testowanie rozwiązania).

3.	 Różne sposoby przedstawiania algorytmów: język naturalny, schemat
blokowy, lista kroków, pseudokod, język programowania.

4.	 Rozwiązywanie problemów z wykorzystaniem algorytmów dotyczących
liczb naturalnych, wyszukiwania elementu w zbiorze nieuporządkowanym
i uporządkowanym, porządkowanie elementów.

5.	 Omówienie sposobów komputerowej reprezentacji wartości logicznych,
liczb naturalnych, znaków i tekstów.

6.	 Wykorzystanie wizualnych i tekstowych języków programowania
w edukacji informatycznej. Przejście od języka wizualnego do tekstowego.

7.	 Programowanie wybranych algorytmów w języku tekstowym
z wykorzystaniem instrukcji wejścia/wyjścia, zmiennych prostych

132

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

i tablic, operacji arytmetycznych i logicznych, instrukcji warunkowych
i iteracyjnych, funkcji bezparametrowych i z parametrami.

8.	 Projektowanie, tworzenie, testowanie i poprawianie własnych programów,
w szczególności służących do sterowania obiektem.

9.	 Wykorzystanie dostępnych pomocy dydaktycznych i oprogramowania
(np. arkusza kalkulacyjnego) do demonstracji i modyfikowania działania
algorytmów.

10.	 Stosowanie metod wywodzących się z informatyki do rozwiązywania
problemów z innych dziedzin.

Przykładowy rozkład materiału:

Temat i tematy cząstkowe
Punkt
podstawy
programowej

Treści Liczba
godzin

1.	 Wprowadzenie 1

•	 Organizacja szkolenia

•	 Podstawa programowa informatyki dla
drugiego etapu edukacyjnego: klasy 7–8

całość 1 0,5

0,5

2.	 Od problemu do algorytmu 4

•	 Etapy rozwiązywania problemu

•	 Przykłady problemów algorytmicznych
z życia codziennego

•	 Algorytmy dotyczące liczb naturalnych

•	 Różne sposoby zapisu algorytmów

I.1, I.2a,

I.5, II.4

1, 2, 3, 8 1

1

1

1

3.	 Od programowania wizualnego do tekstowego 4

•	 Przykład implementacji algorytmu
dotyczącego liczb naturalnych w języku
wizualnym

•	 Przykład algorytmu zapisanego w języku
tekstowym wysokiego poziomu (np. przy
pomocy automatycznej translacji z języka
wizualnego)

•	 Dyskusja na temat możliwości języków
wizualnych

•	 Wprowadzenie do abstrakcji, parametry,
pojęcie funkcji

I.1, I.2a,

I.4, II.1,

II.4

1, 2, 6,

7, 8, 9

1

2

0,5

0,5

133

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

4.	 Programowanie w Pythonie 9

•	 Instrukcje wejścia/wyjścia

•	 Tworzenie własnych funkcji
obliczeniowych z parametrami

•	 Wykorzystanie instrukcji warunkowych
i iteracyjnych w rozwiązywanych zadaniach

•	 Rozwiązywanie zadań dotyczących
operacji na liczbach naturalnych
z wykorzystaniem algorytmów z badaniem
podzielności, m.in. wyodrębnianie cyfr
liczby i algorytm Euklidesa

•	 Przykłady różnych algorytmów
rozwiązania tego samego problemu

I.1, I.2a,

II.1, II.4

3, 4, 6, 7, 8 1

1

2

3

2

5.	 Wyszukiwanie i porządkowanie informacji, przetwarzanie danych 14

•	 Informatyka bez komputera

•	 Reprezentacja liczb, znaków i napisów,
tablice (listy)

•	 Rozwiązywanie zadań związanych
z wyszukiwaniem elementu w zbiorach
nieuporządkowanych i uporządkowanych

•	 Rozwiązywanie zadań związanych
z porządkowaniem zbiorów

•	 Przykłady zadań związanych
z przetwarzaniem danych, które nie są
liczbami

I.1, I.2b,

I.3, I.4,

II.1, II.4

1, 4, 5, 6, 7,
8, 9

2

2

3

4

3

6.	 Rozwiązywanie problemów metodami wywodzącymi się
z informatyki

5

•	 Realizacja algorytmów w arkuszu
kalkulacyjnym

•	 Przykłady problemów z innych dziedzin

•	 Wykorzystanie języków programowania
do sterowania (np. robotem lub obiektem
na ekranie)

I.1, I.2b,

I.5, II.1,

II.2, II.3c,

II.4

1, 2, 3, 6, 8,
9, 10

2

1

2

7.	 Podsumowanie 3

•	 Zadania nauczyciela: gdzie szukać pomocy
i inspiracji; czego uczniowie będą uczyć się
w szkole ponadpodstawowej?

•	 Rozwijanie zainteresowań, praca z uczniem
zdolnym, konkursy informatyczne

całość 1–10 1

2

134

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Omówienie poszczególnych tematów

1.	 Wprowadzenie

Wstępna część szkolenia służy omówieniu zasad jego organizacji.
Należy przedstawić cele szkolenia, nawiązać do szkolenia dotyczącego zakresu
klas 4–6 w wersji 40-godzinnej lub 10-godzinnej (uczestnicy szkolenia powinni
wcześniej ukończyć jedno z tych szkoleń). Jeśli uczestnicy nie kontynuują
szkolenia, to powinni opowiedzieć o sobie i swoich doświadczeniach (charakter
pracy, wiek uczniów, warunki techniczne w ich placówce do prowadzenia zajęć
informatycznych). Pozwoli to osobie prowadzącej szkolenie lepiej dostosować się
do potrzeb grupy, natomiast uczestnikom wzajemnie się poznać.

Należy omówić treści nauczania z podstawy programowej przedmiotu
informatyka sformułowane dla całego II etapu edukacyjnego, zwracając uwagę
szczególnie na te elementy (cele, treści), których realizacja rozpoczyna się
w klasach 4–6 i jest kontynuowana w klasach 7–8, zgodnie ze spiralnym
(przyrostowym) modelem nauczania. Zaakcentować należy, że w klasach
7–8 istnieje konieczność zapisywania określonych algorytmów w języku
programowania. Uczestnicy szkolenia powinni mieć dostęp do treści załączników
do Rozporządzenia Ministra Edukacji Narodowej z dnia 14 lutego 2017 r. w sprawie
podstawy programowej (Dz.U. z 2017 r., poz. 356), które będą omawiane.

2.	 Od problemu do algorytmu

2.1.	Etapy rozwiązywania problemu

W klasach 7–8 uczniowie powinni zostać wdrożeni do rozwiązywania problemów
z wykorzystaniem komputera, a podczas rozwiązywania problemu świadomie
wyróżniać poszczególne etapy:

a)	 określenie zadania – problemu,
b)	 określenie danych do zadania,
c)	 określenie spodziewanego celu, tj. wyników rozwiązania zadania,
d)	 znalezienie i sformułowanie rozwiązania – algorytmu,
e)	 zaprogramowanie rozwiązania,
f)	 przetestowanie i ewentualna korekta rozwiązania.

Należy omówić te kroki na przykładzie problemu, który jest prosty i znany
uczniom. W tej części szkolenia warto odwołać się do treści realizowanych

135

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

podczas szkolenia dotyczącego nauki programowania w klasach 4–6,
np. do przykładów sterowania obiektem na ekranie.

Przykład:
Zadanie polega na narysowaniu poniższej figury.

Należy określić dane do zadania. W tym przypadku jest to długość boku
kwadratu – ale którego? Mamy do wyboru długość boku dużego (zewnętrznego)
lub małego kwadratu. Określamy jako daną np. długość boku zewnętrznego
kwadratu. Wynikiem zadania jest utworzony rysunek.

Poszukujemy metody rozwiązania. Istnieją różne algorytmy rozwiązania
(np. rysowanie czterech kwadratów lub tylko jednego – zewnętrznego – i krzyża
w środku). Po wybraniu algorytmu, przystępujemy do zaprogramowania
rozwiązania. Słuchacze mogą wybrać, czy implementujemy rozwiązanie zadania
w środowisku Scratch, czy w języku Python (wiedza wyniesiona ze szkolenia
w zakresie nauczania klas 4–6 umożliwia realizację w obu językach). Następnie
testujemy napisany program i usuwamy ewentualne błędy.

Przykłady innych rysunków, dla których można podać różne algorytmy
rysowania:

Rysunek 2. Przykłady rysunków

Rysunek 1. Przykładowy problem – figura do narysowania

136

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

2.2.	Przykłady problemów algorytmicznych z życia codziennego

Rozwiązywane problemy powinny odnosić się do różnych dziedzin życia,
nie tylko do informatyki. Wskazane jest, by ukazywały zastosowanie
programowania w tych obszarach. Na przykład: można poddać analizie problem
zwykłego wchodzenia po schodach. Określamy operacje elementarne (podnieś
nogę, postaw na kolejnym stopniu itp.), wskazujemy na konieczność sprawdzania,
w jakiej sytuacji jesteśmy oraz podejmowania decyzji i powtarzania (czy jest
kolejny stopień, kiedy kończymy, kiedy powtarzamy czynności wcześniej
wykonane itp.).

Warto także odwołać się do problemu z życia codziennego, który wymaga
wykorzystania umiejętności matematycznych. Na przykład: możemy zapytać o to,
na ile sposobów można dokonać podziału całej klasy na równoliczne zespoły.
Faktycznie zadanie sprowadza się do tego, aby policzyć, ile dzielników ma liczba
określająca liczność klasy (liczbę uczniów). Możemy przy tym przeprowadzić
dyskusję prowadzącą do określenia, jaki podział jest dopuszczalny – np. czy
zezwalamy na tworzenie zespołów 1-osobowych, bądź pozostawienie jednego
zespołu obejmującego wszystkich uczniów klasy. W ten sposób uczymy
precyzyjnego określenia danych wejściowych i spodziewanych wyników.

Na stronie internetowej Konkursu Informatycznego „Bóbr” (http://bobr.edu.pl)
znajdziemy też wiele ciekawych zadań dotyczących problemów algorytmicznych
z życia codziennego. Zadaniem uczestników szkolenia może być sformułowanie
problemu z życia codziennego lub innych dziedzin nauki – na poziomie uczniów
końcowych klas szkoły podstawowej. Ćwiczenie można wykonać np. w zespołach
dwuosobowych. Następnie uczestnicy szkolenia powinni przedstawić swoje
propozycje.

2.3.	Algorytmy dotyczące liczb naturalnych

Jeden z problemów został podany powyżej – podział klasy na równoliczne
zespoły, czyli znalezienie dzielników liczby uczniów (w tym przypadku określenie,
ile jest takich dzielników). Słuchacze powinni sprecyzować problem, następnie
określić dane i spodziewany wynik. Następnie spróbować znaleźć rozwiązanie,
czyli podać algorytm i zapisać go np. w języku naturalnym.

Problem: Na ile sposobów można podzielić klasę na równoliczne, co najmniej
dwuosobowe zespoły, aby można było rozegrać zawody pomiędzy zespołami.

137

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Dane: Liczba całkowita dodatnia – liczebność klasy.
Wynik: Liczba naturalna – ile jest możliwych podziałów.
Algorytm: Zespoły muszą być co najmniej dwuosobowe, muszą być też co
najmniej dwa zespoły (jeśli mamy rozegrać zawody w obrębie klasy, to cała klasa
nie może być zespołem). W związku z tym należy przeglądać wszystkie liczby od
2 do połowy liczebności klasy oraz sprawdzać, czy kolejna liczba jest dzielnikiem
danej wejściowej (liczebności klasy). Jeśli tak, to powiększamy wynik o jeden
(na początku przyjmujemy, że wynik jest zerem).

Warto przedyskutować z uczestnikami szkolenia, czy to jedyny możliwy sposób
rozwiązania tego problemu, czy nie można tego zrobić sprawniej? Warto
też zapytać, w jakiej sytuacji uzyskamy wynik równy zeru, oznaczający brak
możliwości podziału klasy na zespoły.

Można także w tym punkcie szkolenia nawiązać do algorytmu Euklidesa znajdowania
największego wspólnego dzielnika. Możemy sformułować problem następująco:
mamy dwie liczby – długości boków prostokąta; chcemy znaleźć największy kwadrat,
którym (powielając go) możemy wypełnić prostokąt. Można skorzystać z wizualizacji
algorytmu dostępnych na stronie (http://programowanie.oeiizk.edu.pl).

Zasoby do wykorzystania:
¨¨ Strona OEIiZK: Algorytm Euklidesa – pokaz,

(zakładka „Processing”);
¨¨ Strona OEIiZK: Algorytm Euklidesa – aplikacja interaktywna,

(zakładka „Processing”).

Kolejny problem, do którego można nawiązać, został poruszony w przykładowym
zadaniu z poprzedniej części szkolenia – „Przeliteruj liczbę”.

Uczestnicy szkolenia (pracując w zespołach) mogą spróbować sformułować jakiś
problem dotyczący liczb naturalnych, do rozwiązania którego, oprócz sekwencji
poleceń, potrzebne są takie elementy jak: powtarzanie i podejmowanie decyzji
oraz operacje arytmetyczne na liczbach naturalnych. Następnie zespoły powinny
wymienić się problemami i spróbować znaleźć oraz zapisać algorytm rozwiązania
zadania. Ćwiczymy w ten sposób, oprócz rozwiązywania „klasycznych”
problemów algorytmicznych, także kreatywność nauczycieli w formułowaniu
zadań dla uczniów.

http://programowanie.oeiizk.edu.pl
http://programowanie.oeiizk.edu.pl

138

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

2.4.	Różne sposoby zapisu algorytmów

Algorytmy możemy zapisywać w różnej formie – poprzednio zapisywaliśmy je
w języku naturalnym oraz w języku programowania (np. jeśli uruchamialiśmy
rysowanie figury w Scratchu lub Pythonie). W części szkolenia dotyczącej poziomu
klas 4–6 zapisywaliśmy algorytmy także w postaci listy kroków. Inne popularne
formy zapisu to pseudokod oraz schemat blokowy. Warto w tym miejscu
podkreślić, że zapis w języku programowania powinien być poprzedzony użyciem
innej formy. Warto zwrócić szczególną uwagę na zapis w pseudokodzie, gdyż
najłatwiej na tej podstawie zaimplementować algorytm w języku programowania.
W tym miejscu należy też zwrócić uwagę słuchaczom, że nie każda poruszana
kwestia wymaga programowania. Dla niektórych problemów będziemy tylko
poszukiwać rozwiązania (algorytmu) i zapisywać je w jednej z dostępnych form.

Uczestnicy szkolenia powinni spróbować zapisać algorytmy dotyczące liczb
naturalnych omawiane w poprzednim punkcie w postaci listy kroków, schematu
blokowego lub pseudokodu.

Przykład: Zapis algorytmu dotyczącego problemu liczby podziałów klasy
na równoliczne zespoły.
Dane: n – liczba uczniów klasy;
Wynik: w – liczba możliwych podziałów na równoliczne zespoły.

Lista kroków:
1.	 Wczytaj n.
2.	 Przypisz zmiennej w wartość 0.
3.	 Dla zmiennej d przyjmującej wartości od 2 do n/2 wykonuj:

•	 Jeżeli reszta z dzielenia n przez d jest równa 0, to:
▪▪ przypisz zmiennej w wartość w+1;

•	 Przypisz zmiennej d wartość d+1.
4.	 Wypisz w.

Pseudokod:
wczytaj n
w ← 0
dla d = 2…n/2 wykonuj

jeżeli n mod d = 0 to w ← w + 1
d ← d + 1

wypisz w

139

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

3.	 Od programowania wizualnego do tekstowego

3.1.	Przykład implementacji algorytmu dotyczącego liczb naturalnych
w języku wizualnym

W tej części szkolenia dochodzimy do implementacji algorytmu z użyciem
komputera i konkretnego narzędzia programistycznego – w tym przypadku
języka wizualnego. Należy jednak pamiętać i akcentować, że implementowanie
algorytmu stanowi tylko jeden z wielu kroków na drodze do rozwiązania zadania.

Uczestnicy szkolenia umieją już tworzyć projekty w środowisku Scratch, więc
nie powinno stanowić problemu zaimplementowanie wybranych algorytmów.
Można najpierw powtórzyć implementację zadania: „Przeliteruj liczbę” – ze
szkolenia dotyczącego nauczania klas 4–6. Następnie warto napisać skrypty
realizujące wybrany algorytm spośród wcześniej omówionych.

Rysunek 3. Schemat blokowy

140

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

3.2.	Przykład algorytmu zapisanego w języku tekstowym wysokiego
poziomu (np. przy pomocy automatycznej translacji
z języka wizualnego)

W tym punkcie szkolenia należy zrealizować przykładowy scenariusz 1. Dotyczy
on problemu znajdowania największego wspólnego dzielnika. Algorytm jest
implementowany najpierw w Scratchu, a następnie w środowisku Google
Blockly (korzysta ono z bloków bardzo podobnych do używanych w Scratchu).
Środowisko to umożliwia automatyczną translację na szereg języków tekstowych,
w tym na język Python.

Uczestnicy szkolenia znają już podstawy programowania w języku Python
(kurs dotyczący klas 4–6 lub uzupełniający) w zakresie rozwiązywania problemów
z wykorzystaniem grafiki żółwia. Tym razem implementują pierwszy problem
obliczeniowy, a także definiują funkcję obliczającą wartość. Poruszana jest
również kwestia różnych algorytmów rozwiązania tego samego problemu,
modyfikujemy algorytm Euklidesa (wersja z resztą z dzielenia). Przy okazji
dyskutujemy o liczbie kroków koniecznych do wykonania, by wyliczyć wynik –
rozważania te stanowią wstęp do analizy złożoności czasowej algorytmów.

3.3.	Dyskusja na temat możliwości języków wizualnych

Porównujemy języki/środowiska programowania wizualnego i tekstowego –
zarówno ich możliwości, jak i wygodę użytkowania oraz szybkość tworzenia
kodu. Należy wskazać ograniczenia środowiska Scratch – brak możliwości
definiowania funkcji określających wynik oraz brak operacji dzielenia
całkowitego. Namawiamy do programowania tekstowego na zajęciach
z uczniami. Możliwość łagodnego przejścia od programowania wizualnego
do tekstowego zapewnia zastosowanie narzędzia do automatycznej translacji
kodu. Przy prostych zadaniach dobre rezultaty daje użycie środowiska Google
Blockly, w którym możemy utworzyć kod, zestawiając (wizualnie) klocki-bloczki
i zobaczyć, jak wygląda rozwiązanie m.in. w języku Python (scenariusz zajęć
realizowany w poprzednim punkcie).

3.4.	Wprowadzenie do abstrakcji, parametry, pojęcie funkcji

Rozważamy różne podejścia do wprowadzania danych i prezentacji wyników.
Docelowym rozwiązaniem jest takie, w którym wyraźnie zostaną rozróżnione:
określenie danych, właściwa realizacja algorytmu, wypisanie wyniku. Do tego

141

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

celu niezbędne jest wprowadzenie mechanizmu funkcji z parametrami, mającymi
możliwość określenia wyniku. W ten sposób jesteśmy w stanie zaimplementować
algorytm tak, by szczegóły jego realizacji podczas wywołania pozostawały
niejako ukryte dla osoby korzystającej z utworzonej funkcji. Ponadto w takiej
sytuacji zmiana danych nie powoduje konieczności ingerowania w kod programu.
Zauważmy, że już tak postępowaliśmy, realizując przykładowy scenariusz 1.
Warto zwrócić uwagę, że dla uczniów często zagadnienia te okazują się trudne.

4.	 Programowanie w Pythonie

W tej części szkolenia zarówno wprowadzamy elementy języka programowania
Python, jak i utrwalamy umiejętność ich wykorzystywania. Należy jednak
pamiętać, że najlepsze efekty uzyskamy, gdy wprowadzanie nowych konstrukcji
potraktujemy jako odpowiedź na konieczność zwiększania repertuaru środków
używanych do zapisu kolejnych algorytmów stanowiących rozwiązanie
określonego problemu. W trakcie szkolenia kładziemy zatem nacisk
na umiejętność rozwiązywania problemów: rozpoczynamy od ich sformułowania
i przechodzimy przez kolejne etapy rozwiązania.

Uczestnicy już na poprzednim szkoleniu w zakresie sterowania obiektem
na ekranie zostali wprowadzeni do programowania tekstowego
(z wykorzystaniem języka Python). Poznali podstawowe konstrukcje języka,
korzystali ze zmiennych, definiowali funkcje, używali funkcji z parametrami.

4.1.	Instrukcje wejścia/wyjścia

W języku Python można pracować w trybie bezpośrednim (interaktywnym,
w którym polecenie jest wykonywane od razu po jego wpisaniu i zatwierdzeniu)
lub z użyciem funkcji (skryptowym). Tryb bezpośredni okazuje się szczególnie
przydatny, gdy chcemy szybko sprawdzić działanie np. rzadko używanej funkcji.
W trybie bezpośrednim automatycznie wypisywana jest wartość ostatniego
wyliczonego wyrażenia, nie ma potrzeby używania wbudowanego polecenia:
print(). Zwykle jednak będziemy tworzyć funkcje.

Przykład zadania:
Rozważmy problem zamiany wartości zmiennych. Na przykład: jeśli zmiennej x
przypisana została wartość 3, a zmiennej y wartość 5, chcemy, aby po wykonaniu
programu było odwrotnie, czyli aby wartość zmiennej y wynosiła 3. W jakiej
kolejności należy ustawić poniższe instrukcje?

142

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

1. x = y

2. y = pom

3. pom = x

Warto pokazać zastosowanie kilku najczęściej używanych funkcji z biblioteki
math i przetestować ich działanie w trybie bezpośrednim.

1. from math import *

2.

3. print(sqrt(2)) # pierwiastek kwadratowy

4. print(round(2.3)) # zaokrąglenie

5. print(floor(2.7)) # podłoga

6. print(ceil(2.3)) # sufit

7. print(pi) #liczba pi

8. kto = input('Jak masz na imię? ') #wczytanie danych, napis

9. ile = int(input('Ile masz lat? ')) #wczytanie danych, konwersja na liczbę całkowitą

10. print(ord('a')) # kod ASCII znaku

11. print(chr(97)) # znak o podanym kodzie ASCII

4.2.	Tworzenie własnych funkcji obliczeniowych z parametrami

Prostym zadaniem może być obliczenie średniej arytmetycznej dwóch liczb.

1. def srednia(a, b):

2. return (a + b) / 2

W ten sposób przypominamy pojęcie funkcji z parametrami. Na tym etapie nie
akcentujemy tego, że wynik nie jest typu całkowitoliczbowego.

Przykłady zadań:
Korzystając z poniższego wzoru, napisz funkcję: CnaF(c), której wynikiem
dla podanej temperatury w stopniach Celsjusza jest temperatura w stopniach
Farenheita.

Wynikiem CnaF(0) jest 32, wynikiem CnaF(100) jest 212.

F = 32 + — × C9
5

143

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Napisz funkcję odwrotną: FnaC(f), która zamienia stopnie Fahrenheita na Celsjusza.

Wynikiem FnaC(32) jest 0, wynikiem FnaC(212) jest 100.

Uczestnicy szkolenia, pracując parami, powinni wymyślić kilka prostych
problemów obliczeniowych, następnie zapisać odpowiednie funkcje (jedna osoba
proponuje problem do rozwiązania dla drugiej).

4.3.	Wykorzystanie instrukcji warunkowych i iteracyjnych
w rozwiązywanych zadaniach

Uczestnicy szkolenia korzystali już wcześniej z instrukcji warunkowych
i iteracyjnych. Teraz powinni wykonać kilka prostych zadań obliczeniowych
z wykorzystaniem takich instrukcji.

Przykłady zadań:

✔✔ Zadanie: Maksymalny element

Rozważamy problem znajdowania elementu maksymalnego. Zadanie polega
na napisaniu funkcji: maksymalny(x, y), której wynikiem jest większa z dwóch
liczb lub, gdy są one równe – dowolna.

Wynikiem funkcji: maksymalny(1, 3) jest 3, wynikiem maksymalny(4, 2) jest
4, wynikiem maksymalny(2, 2) jest 2.

W poniższym kodzie jest błąd. Proszę go znaleźć.

1. def maksymalny(x, y):

2. if x < y:

3. return x

4. else:

5. return y

C = — × (F – 32)9
5

144

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

✔✔ Zadanie: Zegar

Na zegarze elektronicznym wyświetlają się godziny, minuty i sekundy. Zdefiniuj
funkcję: ile(g, m, s), która wyznaczy, ile sekund upłynęło od północy do czasu
wskazywanego na zegarze. Parametrami tej funkcji są trzy liczby określające
odpowiednio: g – godziny, m – minuty i s – sekundy wskazywane przez zegar.

Np. wynikiem ile(7, 3, 2) jest 25382.

✔✔ Zadanie: Potęgowanie

Ania uczy się potęgować. Zaczęła od liczby 2. Wie, że:
21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, ...
Zauważyła, że ostatnia cyfra wyniku powtarza się cyklicznie: 2, 4, 8, 6. Jeśli
wykładnik potęgi to liczba: 1, 5, 9, 13, 17 itd., to ostatnią cyfrą jest 2. Jeśli wykładnik
potęgi to liczba: 2, 6, 10, 14, 18 itd., to ostatnią cyfrą jest 4 itd. Tak wciągnęła ją
zabawa, że postanowiła sprawdzić, jakie wyniki uzyska dla liczby 3.

Zdefiniuj funkcję o nazwie: spr(n), która zweryfikuje obliczenia Ani dla tej liczby.
Parametrem funkcji jest wykładnik potęgi (liczba z zakresu od 1 do 1000000).
Wynikiem funkcji jest ostatnia cyfra rezultatu potęgowania 3n.

Np. wynikiem spr(1) jest 3.

✔✔ Zadanie: Numery mieszkań

Numery mieszkań w pewnym bloku są trzycyfrowe i składają się z numeru klatki
(1 lub 2), piętra (od 0 do 3) i numeru kolejnego mieszkania na piętrze (od 1 do 3).
W każdej klatce i na każdym piętrze jest tyle samo mieszkań. Wypisz kolejne
numery wszystkich mieszkań. Funkcję napisz tak, by łatwo można było zmienić
liczbę klatek, pięter i mieszkań na piętrze.

1. def mieszkania(maxk, maxp, maxm):

2. for k in range(1, maxk+1):

3. for p in range(maxp+1):

4. for m in range(1,maxm+1):

5. print(100*k+10*p+m)

145

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

4.4.	Rozwiązywanie zadań związanych z operacjami na liczbach
naturalnych z wykorzystaniem algorytmów z badaniem podzielności,
m.in. wyodrębnianie cyfr liczby i algorytm Euklidesa

Na początku tego etapu szkolenia należy rozwiązać przykładowe
zadanie 1. Polega ono na wypisaniu cyfr liczby, nawiązuje do zadania
„Przeliteruj liczbę” wykorzystywanego na poprzednim szkoleniu.

Kolejne zadanie może polegać na sumowaniu cyfr liczby.

1. def suma_cyfr(liczba):

2. suma = 0

3. while liczba > 0:

4. suma = suma + liczba % 10

5. liczba = liczba // 10

6. return suma

Podobnie możemy szukać największej cyfry w liczbie.

1. def najwieksza_cyfra(liczba):

2. najwieksza = 0

3. while liczba > 0:

4. if liczba % 10 > najwieksza:

5. najwieksza = liczba % 10

6. liczba = liczba // 10

7. return najwieksza

W ten sposób przygotowujemy uczestników do rozwiązywania zadań związanych
z porządkowaniem danych. Podobnych problemów można sformułować o wiele
więcej – choćby: „Ile jest siódemek w danej liczbie?” lub: „Czy w danej liczbie
jest więcej cyfr parzystych, czy nieparzystych, a może po równo?” (istnieją trzy
możliwości, więc jest to dobre zadanie na wykorzystanie zagnieżdżonej instrukcji
warunkowej).

Na tym etapie szkolenia warto zaprogramować rozwiązanie omawianego
wcześniej zadania, dotyczącego podziału klasy na równoliczne grupy. Warto też
podać przykład zadania, w którym należy wykorzystać algorytm Euklidesa.

146

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

✔✔ Zadanie: Drużyna

W klubie trenuje n zawodników grających na pozycji obrońcy i m zawodników
grających w ataku. Na treningu, wykorzystując wszystkich zawodników, trener
musi zestawić jak największą liczbę drużyn, w których będzie po tyle samo
obrońców i atakujących. Napisz funkcję: ile(n, m), której wynikiem będzie
liczba obrońców występujących w każdej z drużyn.

Np. wynikiem ile(80, 32) jest 5.

Nie należy stronić od rozwiązywania nieco ambitniejszych zadań. Analizując
problemy matematyczne, możemy np. rozwiązać zadanie: „Znajdź n-tą
liczbę doskonałą, gdzie n to dana liczba naturalna”. Jest to dobre zadanie
do zastosowania konstrukcji, w której jedna z samodzielnie zbudowanych funkcji
wywołuje inną funkcję (ćwiczymy podział problemu na podproblemy), wynik
nie jest oczywisty i złożoność czasowa przyjętego algorytmu ma praktyczne
znaczenie (przykładowe zadanie 3).

Podczas szkolenia należy również zaprezentować choć jeden przykład zadania,
w którym poprawnie sformułowany algorytm rozwiązania eliminuje konieczność
wykonywania wielu żmudnych czynności. Przykład taki może stanowić zadanie:
„Czy iloczyn cyfr danej liczby naturalnej jest liczbą pierwszą?”.

Pierwszym pomysłem, jaki się narzuca, jest policzenie iloczynu cyfr i sprawdzenie,
czy jest on liczbą pierwszą. Tymczasem można postąpić inaczej – wystarczy
zauważyć, że warunkiem koniecznym i wystarczającym do tego, by iloczyn cyfr był
liczbą pierwszą, jest to, by w liczbie występowały tylko jedynki (może też nie być
ani jednej) i dokładnie jedna cyfra spośród 2, 3, 5, 7.

Jeszcze kilka przykładów zadań:

✔✔ Zadanie: Ile mamy dni?

Czy zastanawiałaś/eś się kiedyś, ile dni dotąd przeżyłeś/aś? Zadanie jest
na pozór proste. Trzeba jednak pamiętać o uwzględnieniu lat przestępnych. Rok
przestępny to taki rok, który jest podzielny przez 4, ale nie jest podzielny przez
100 lub jest podzielny przez 400. Napisz funkcję: imd(rok, miesiąc, dzień).
Wartością funkcji jest liczba dni, która upłynęła od danej daty do dzisiaj.

147

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

✔✔ Zadanie: Ślimak na słupie

Zdefiniuj funkcję: kiedy(x, y, z). Wynikiem funkcji jest liczba określająca,
którego dnia ślimak znajdzie się na szczycie dziesięciometrowego słupa.
Ślimak pierwszego dnia startuje u podstawy słupa. Każdego dnia wspina się
o x centymetrów. Każdej nocy osuwa się o y centymetrów, chyba że natrafi
na półkę – wtedy zatrzymuje się na niej. Półki znajdują się co z centymetrów,
licząc od podstawy słupa. Zakładamy, że x jest większe od y.

Wynikiem funkcji kiedy(300, 100, 100) jest 4, wynikiem kiedy(5, 3, 2)
jest 250.

✔✔ Zadanie: Suma cyfr

Zdefiniuj funkcję suma_jed(liczba), której wartością jest liczba jednocyfrowa.
Funkcja powinna liczyć sumę cyfr parametru: liczba, następnie sumę cyfr
policzonej sumy, itd. – aż suma będzie jednocyfrowa.

Wynikiem funkcji suma_jed(12356) jest 8, wynikiem suma_jed(123) jest 6.

4.5.	Przykłady różnych algorytmów rozwiązania tego samego problemu

Realizując przykładowy scenariusz 1, korzystaliśmy z algorytmu Euklidesa
znajdowania największego wspólnego dzielnika zarówno z odejmowaniem,
jak i z resztą z dzielenia. Porównaliśmy te algorytmy pod kątem liczby
wykonywanych operacji. W przykładowym zadaniu 3 (realizowanym
ewentualnie w poprzednim punkcie), także występują dwa algorytmy obliczania
sumy dzielników liczby o różnej złożoności (liczbie wykonywanych operacji).
Warto w tym miejscu po raz kolejny powrócić do problemu podziału klasy
na równoliczne grupy i znaleźć algorytm wykonujący mniejszą liczbę operacji.

wczytaj n
w ← 0
d ← 2
dopóki d*d<n wykonuj

jeżeli n mod d = 0 to w ← w + 2
d ← d + 1

jeżeli d*d = n to w ← w + 1
wypisz w

148

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Przykład zadania:
Napisz funkcję: piramida(n, bok), której wynikiem będzie łączna długość
odcinków tworzących piramidę. Pierwszy parametr określa liczbę poziomów
piramidy, a drugi – długość boku każdego z kwadratów.

Można zaproponować przeanalizowanie poniższych rozwiązań. Po pierwsze
należy zweryfikować, czy wszystkie są prawidłowe – jak to sprawdzić?
Czy na podstawie rozwiązania można odtworzyć pomysł na jego zaprojektowanie?

1. def piramida1(n, bok):
2. wy = 0
3. for i in range(n):
4. wy = wy + 2 *(n - i) + 1
5. return (wy + n) * bok

6.
7. def piramida2(n, bok):
8. x = 0
9. for i in range(n):
10. x = x + (n - i) * bok * 3 - (n - i - 1) * bok
11. return x + n * bok
12.
13. def piramida3(n, bok):
14. l = 0
15. b = n
16. while b > 0:
17. l = b * bok + l
18. b = b - 1
19. l = l + 3 * n * bok
20. c = n - 1
21. h = 0
22. while c > 0:
23. h = c * bok + h
24. c = c - 1
25. l = l + h
26. return l

Rysunek 4. Piramidy o 4 i 5 poziomach

149

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

27.
28. def piramida4 (n, bok):
29. return (n + 3) * n * bok

Podsumowanie

Podstawowy zestaw instrukcji języka Python, który powinni opanować
uczestnicy szkolenia, obejmuje instrukcję przypisania wartości – podstawienia
(=), wprowadzanie wartości przez użytkownika (input), wypisywanie wyniku
(print), iteracje (while, for), instrukcję warunkową (if) oraz informacje
o tworzeniu wyrażeń arytmetycznych (operatory: +, –, *, **, /, //, %;
nawiasy) i logicznych (porównania, spójniki logiczne, nawiasy). Używamy funkcji
i korzystamy z wbudowanych funkcji pierwotnych. Z metodycznego punktu
widzenia ważne jest, aby poszczególne elementy wprowadzać wówczas, gdy
stają się potrzebne do zaimplementowania konkretnego algorytmu. Nie należy
wprowadzać wszystkich jednocześnie.

Dobieramy zadania o coraz wyższym stopniu trudności. Powinny one wymagać
zaprojektowania algorytmu rozwiązania, w części zadań możemy zasugerować
algorytm.

Zasoby do wykorzystania:
¨¨ Podręcznik Wikibooks: Zanurkuj w Pythonie;
¨¨ Materiały „Koduj z Klasą” dotyczące Pythona;
¨¨ Samouczek Pythona: http://www.learnpython.org/pl/;
¨¨ Python w szkole – materiały OEIiZK;
¨¨ Code Academy (ang.): https://www.codecademy.com/learn/learn-python;
¨¨ Interaktywny samouczek Pythona: https://snakify.org/.

5.	 Wyszukiwanie i porządkowanie informacji, przetwarzanie danych

5.1.	Informatyka bez komputera

W tej części szkolenia warto odwołać się do materiałów z serwisu
http://jasijoasia.edu.pl, scenariuszy projektu „CS Unplugged”.
Omawianie zagadnień dotyczących przetwarzania danych można rozpocząć bez
używania komputera. W poniższej tabelce znajdują się propozycje scenariuszy
do ewentualnego wykorzystania. Niektóre z nich mogły już zostać zrealizowane
podczas poprzedniej części szkolenia dla klas 4–6. W zależności od poziomu grupy

https://pl.wikibooks.org/wiki/Zanurkuj_w_Pythonie
http://python101.readthedocs.io/pl/latest/
http://python.oeiizk.edu.pl/

150

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

wybieramy gotowe scenariusze lub proponujemy własne. Wskazane jest podzielić
uczestników na grupy i każdej grupie przydzielić do opracowania po jednym
temacie. Później powinna nastąpić krótka prezentacja efektów ich pracy.

Na początku są tylko dane
O reprezentacji informacji

Zanim wprowadzimy komputer
O algorytmach

•	 Zliczanie kropek – system binarny

•	 Kolory jako liczby – kodowanie obrazu

•	 To można odtworzyć! – kompresja tekstu

•	 Magia obracanych kart – wykrywanie
i korekcja błędów

•	 20 pytań – teoria informacji

•	 Wojna morska – algorytmy
przeszukiwania

•	 Najlżejsze i najcięższe – algorytmy
sortowania

•	 Zrobić to szybciej – sieci sortujące

W tej części szkolenia można także wykorzystać zadania konkursu „Koala”.
Jest on organizowany w dwóch kategoriach – jedna dotyczy uczniów klas 7–8.
Rywalizacja polega na rozwiązywaniu zadań matematyczno-informatycznych
bez korzystania z komputera.

Zasoby do wykorzystania:
¨¨ Strona: http://jasijoasia.edu.pl/ (projekt „CS Unplugged”, Scenariusze);
¨¨ Strona konkursu „Koala”: http://jasijoasia.edu.pl/koala/index.htm.

5.2.	Reprezentacja liczb, znaków i napisów, tablice (listy)

Podstawą reprezentacji informacji w komputerze jest system dwójkowy.
Oprócz przeprowadzenia wspominanych na szkoleniu dla klas 4–6 ćwiczeń
z wykorzystaniem kart binarnych, można rozważyć na bardziej abstrakcyjnym
poziomie problem przeliczania z systemu na system.

Rysunek 5. Kalkulator binarny

151

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Uczestnicy otrzymują polecenie zapisania konkretnej liczby w systemie dwójkowym,
a następnie jej przeliczenia oraz odwrotnie. Można też postawić dodatkowe pytania:
Ile liczb możemy zapisać za pomocą dwóch cyfr, trzech cyfr, n cyfr? Jaką najmniejszą
i jaką największą liczbę można zapisać? Należy krótko omówić reprezentację znaków
w komputerze – przekazać informację o kodach ASCII (ang. American Standard
Code for Information Interchange) oraz wartościach logicznych. Czasami w zadaniach
związanych z przetwarzaniem znaków/napisów łatwiej jest operować na kodach-
liczbach, niż bezpośrednio na znakach. Przykładem mogą być zadania dotyczące
szyfrowania napisu, np. z wykorzystaniem „szyfru Cezara”. Od wykorzystania
napisów jest już bardzo blisko do zastosowania tablic jako zbiorów elementów tego
samego typu. W języku Python tablice implementowane są za pomocą list.

Podsumowanie tej części może polegać na znalezieniu algorytmu rozwiązania
następującego zadania (przykładowe zadanie 2):

Znajdź najmniejszą liczbę naturalną, która nie jest sumą liczb znajdujących się
w podanym uporządkowanym ciągu liczb naturalnych.

Na przykład dla ciągu [1, 2, 3, 4, 100] wynikiem jest 11, a dla [1, 1, 2, 3, 5, 18, 21]
wynikiem jest 13.

Zasoby do wykorzystania:
¨¨ Strona OEIiZK: http://programowanie.oeiizk.edu.pl,

(sekcja: „Informatyka /prawie/ bez komputera”);
¨¨ Jochemczyk W., Olędzka K., (2016), Ważenie a system binarny, Toruń:

Informatyka w Edukacji.

5.3.	Rozwiązywanie zadań związanych z wyszukiwaniem elementu
w zbiorach nieuporządkowanych i uporządkowanych

Ważne, aby w tej części szkolenia ukazać, jak powszechne jest wyszukiwanie
i porządkowanie informacji – jak wiele problemów sprowadza się
do wykonywania tych operacji. Rozwiązujemy odpowiednio dobrane zadania.

Omówienie zagadnień związanych z wyszukiwaniem elementu w tablicy
rozpoczynamy od wyszukiwania w tablicy nieuporządkowanej. Na przykład: Wpisz
swoje imię, a komputer odpowie, czy jesteś chłopcem, czy dziewczynką. Piszemy
funkcję, której parametrem jest imię dziecka, a wynikiem napis: „chłopiec” lub
„dziewczynka”. W najprostszej wersji wystarcza analiza ostatniego znaku imienia:

http://iwe.mat.umk.pl/archiwum/iwe2016//materials/II_Drukarnia_IwE/08.pdf
http://iwe.mat.umk.pl/archiwum/iwe2016//materials/II_Drukarnia_IwE/08.pdf

152

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

1. def dziecko(imie):

2. if imie[len(imie) - 1] == 'a':

3. return 'dziewczynka'

4. else:

5. return 'chłopiec'

Powyższa wersja funkcji wydaje się jednak niedoskonała – nie uwzględnia,
że istnieją imiona żeńskie, które nie kończą się literą a, ani że zdarzają się imiona
męskie, których ostatnią literą jest a. Tworzymy listy wyjątków (zadbajmy, by
znalazły się w niej odpowiednie imiona osób z grupy, z którą prowadzimy zajęcia,
o ile są reprezentowane):

1. meskie_w = ['Kuba', 'Barnaba', 'Dyzma', 'Kosma', 'Bonawentura', 'Jarema']

2. zenskie_w = ['Inez', 'Dolores', 'Beatrycze']

Rozbudowana wersja funkcji będzie wyglądała następująco:

1. def dziecko(imie):

2. if imie[len(imie) - 1] == 'a':

3. if jest_elementem(imie, meskie_w):

4. return 'chłopiec'

5. else:

6. return 'dziewczynka'

7. else:

8. if jest_elementem(imie, zenskie_w):

9. return 'dziewczynka'

10. else:

11. return 'chłopiec'

Brakuje już tylko funkcji: jest_elementem. Najprościej można zapisać ją,
korzystając z operacji: in (należy do zbioru).

1. def jest_elementem(imie, imiona):

2. return imie in imiona

153

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Warto rozwiązać także zadanie, w którym będziemy musieli samodzielnie
przejrzeć zbiór nieuporządkowany – na przykład polegające na wypisaniu tych
liczb, które w bezpośrednim sąsiedztwie mają liczby mniejsze od siebie.

1. def szukaj(liczby):

2. for i in range(1,len(liczby)-1):

3. if liczby[i]>liczby[i-1] and liczby[i]>liczby[i+1]:

4. print(liczby[i])

Kolejnym zagadnieniem jest wyszukiwanie w tablicy uporządkowanej, dla
ustalenia uwagi: niemalejąco. Możemy w tym przypadku postąpić sprytniej –
nie musimy przeglądać po kolei wszystkich elementów. Warto w tym miejscu
nawiązać do realizowanej podczas poprzedniego szkolenia gry w zgadywanie
liczby. Rozpoczynamy od określenia zakresu poszukiwań – jest nim cała tablica,
od początkowego do ostatniego elementu. Następnie zawężamy ten zakres
w następujący sposób: sprawdzamy element znajdujący się pośrodku zakresu:
jeśli jest on mniejszy od poszukiwanego – w poszukiwaniach będziemy brać
pod uwagę tylko elementy stojące na dalszych pozycjach niż środkowy,
w przeciwnym przypadku – te dalsze elementy odrzucamy. Czynności
powtarzamy. Kończymy, gdy pozostanie jeden element.

1. def jest_elementem_uporz(poszukiwany, a):

2. imin = 0

3. imax = len(a) - 1

4. while imin < imax:

5. s = (imin + imax) // 2

6. if a[s] < poszukiwany:

7. imin = s + 1

8. else:

9. imax = s

10. return a[imin] == poszukiwany

Rozważmy następujące zadanie: Dany jest co najmniej trzyelementowy zbiór
liczb określających długości odcinków. Czy z każdego zestawu trzech odcinków
o długościach wziętych z tego zbioru można zbudować trójkąt? Rozwiązanie
można sprowadzić do znalezienia dwóch najmniejszych elementów oraz
elementu największego (przykładowe zadanie 4).

154

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Znalezienie najmniejszego (podobnie jak największego) elementu w zbiorze
nie jest zadaniem trudnym. Należy jednak uświadomić sobie, w jakim celu
to robimy. Możliwe są dwa podejścia, których realizacja nieco się różni.
W pierwszym z nich interesuje nas jedynie wartość najmniejszego elementu,
a w drugim – umiejscowienie najmniejszego elementu (w tablicy-liście
reprezentującej zbiór w komputerze). Odpowiednie fragmenty programów mogą
wyglądać następujco (a – oznacza tablicę, w której szukamy najmniejszego elementu;
zakładamy, że najmniejszy jest element początkowy, następnie przeglądamy kolejne
elementy i gdy znajdziemy wśród nich mniejszy, zmieniamy wartość zmiennej):

1. def mini(a):

2. minimum = a[0]

3. for i in range(1, len(a)):

4. if a[i] < minimum:

5. minimum = a[i]

6. return minimum

oraz

1. def imini(a):

2. iminimum = 0

3. for i in range(1, len(a)):

4. if a[i] < a[iminimum]:

5. iminimum = i

6. return iminimum

Dla a = [22, 44, 66, 88, 11, 33, 55, 77, 99] wynikiem mini(a) jest 11 (tj. wartość
najmniejszego elementu), a wynikiem imini(a) jest 4 (tj. wartość indeksu dla elementu
najmniejszego – bo a[4]=11 – przypominamy, że elementy numerujemy od zera).

Warto z uczestnikami szkolenia zastanowić się, jak rozwiązać zadanie dotyczące
trójkątów (znalezienie dwóch najmniejszych liczb i największej).

5.4.	Rozwiązywanie zadań związanych z porządkowaniem zbiorów

Porządkowanie elementów zbioru jest jednym z zadań najczęściej wykonywanych
przez komputery. Warto porządkować zbiory – w zbiorze uporządkowanym
łatwiej wyszukujemy elementy, bezproblemowo uzyskujemy dostęp do elementu

155

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

najmniejszego i największego itd. Nawiązujemy do praktycznych sytuacji, takich
jak np. układanie we właściwej kolejności kartek, które nam się rozsypały
(ale na szczęście były ponumerowane). Podczas szkolenia prosimy uczestników,
by zaproponowali algorytmy porządkowania. Okaże się, że propozycji jest
wiele – istnieją różne algorytmy rozwiązania tego zadania. Prawie wszystkie
opierają się na wykorzystaniu jako podstawowej operacji porównania dwóch
elementów sortowanego zbioru (tablicy). Poszczególne elementy przestawiane są
w taki sposób, by w końcu otrzymać dane uporządkowane.

Jednym z popularnych algorytmów porządkowania jest sortowanie przez
proste wybieranie. Załóżmy, że chcemy tablicę posortować niemalejąco.
Zatem na początkowej pozycji powinien znaleźć się element najmniejszy,
na kolejnej – najmniejszy z pozostałych itd. Algorytm sortowania przez proste
wybieranie polega na wyszukaniu elementu mającego się znaleźć na żądanej
pozycji i zamianie miejscami z tym, który był tam dotychczas. Najpierw
znajdujemy element najmniejszy w całej tablicy i zamieniamy go z początkowym.
W kolejnym kroku znajdujemy element najmniejszy w części tablicy bez elementu
początkowego i zamieniamy go z drugim. Podobnie w kolejnych krokach –
znajdujemy najmniejszy z elementów nieposortowanej jeszcze części tablicy
i zamieniamy go z pierwszym w tej części. Wielokrotnie powtarzamy tę akcję
dla nieuporządkowanej części danych, aż cała tablica będzie posortowana.
Zwróćmy uwagę, że wykorzystujemy algorytm poszukiwania miejsca minimum
omówiony w poprzednim punkcie.

Na zajęciach warto zapisać ten algorytm w pseudokodzie. Można też zaprezentować
wizualizację algorytmu, korzystając z serwisu http://pythontutor.com/.

Rysunek 6. Wizualizacja algorytmu sortowania przez wybieranie

156

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Pewne algorytmy porządkowania są przydatne jedynie dla określonych
specyficznych danych. Jednocześnie niecelowe jest używanie ich w innych
sytuacjach. Jeśli na przykład w tablicy mamy zapisaną sekwencję wyników
n rzutów sześcienną kostką do gry, chcąc ją uporządkować, wykorzystamy
algorytm sortowania przez zliczanie. Ma on zastosowanie w sytuacji
porządkowania zbiorów całkowitoliczbowych, a do takich należy zbiór wyników
rzutów kostką. Sortowanie przez zliczanie wymaga wykorzystania dodatkowej
struktury danych, w której na początku wyliczamy i zapamiętujemy liczby
wystąpień poszczególnych wartości z sortowanej tablicy. Kiedy już wyliczymy te
liczby, wypełniamy tablicę niejako od nowa, odpowiednimi danymi.

1. def sortuj(a):

2. b=[0 for i in range(6)]

3. for i in range(len(a)):

4. b[a[i]-1]=b[a[i]-1]+1

5. k=0

6. for i in range(6):

7. for j in range(b[i]):

8. a[k]=i+1

9. k=k+1

Tablice – listy są zawsze indeksowane od zera. Możliwe wyniki rzutów kostką
znajdują się w zakresie od 1 do 6, więc przy zliczaniu od wyniku odejmujemy 1,
a wypełniając tablicę – dodajemy 1. Warto w tym miejscu zastanowić się, jak
postępować, gdy nie znamy zakresu danych.

Omawiając algorytmy porządkowania danych, przeprowadzamy dyskusję
nt. złożoności czasowej i pamięciowej algorytmów. W przypadku algorytmu
sortowania przez zliczanie zastanawiamy się, kiedy warto go stosować.

Zasoby do wykorzystania:
¨¨ Strona wizualizacji kodów Pythona: http://pythontutor.com/.

157

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

5.5.	Przykłady zadań związanych z przetwarzaniem danych,
które nie są liczbami

W tym punkcie można zrealizować przykładowy scenariusz 2. Omawiany w nim
problem polega na sprawdzeniu, czy dwa słowa są swoimi anagramami.

Przykład zadania:
Napisz funkcję: ile(napis), której wynikiem będzie liczba unikatowych znaków
występujących w napisie.
Np. wynikiem ile(’abrakadabra hokus pokus’) jest 11.

6.	 Rozwiązywanie problemów metodami wywodzącymi się
z informatyki

6.1.	Realizacja algorytmów w arkuszu kalkulacyjnym

Rozwiązywanie problemów algorytmicznych nie zawsze wymaga użycia języka
programowania wysokiego poziomu. Często wystarczy użyć innego narzędzia
wyspecjalizowanego w przetwarzaniu danych. Jako przykład posłuży tu arkusz
kalkulacyjny. Możemy w nim wykonywać obliczenia i zapisywać algorytmy.
Nie trzeba znać działania wszystkich funkcji arkusza – do rozwiązywania
problemów algorytmicznych zwykle wystarczą podstawowe operacje:
działania arytmetyczne, funkcja warunkowa, sumowanie. Arkusz kalkulacyjny
wydaje się szczególnie godny polecenia do realizowania algorytmów związanych
z obliczeniami. Po wpisaniu ogólnego wzoru ciągu, można wygodnie śledzić,
jak zmieniają się kolejne wyrazy zadanego ciągu, a także próbować wykrywać
zależności, stawiać i weryfikować hipotezy. Wizualizacja, np. w postaci
wykresu, także może pomóc w tych czynnościach. Po wpisaniu formuł łatwo
przeprowadzać symulacje dla różnych danych.

Jako praktyczne ćwiczenie warto rozwiązać z uczestnikami szkolenia
przykładowe zadanie 5.

6.2.	Przykłady problemów z innych dziedzin

Podczas szkolenia należy nawiązywać do zadań z różnych dziedzin. W naturalny
sposób narzucają się naszej uwadze problemy matematyczne. Warto jednak
wskazywać do rozwiązania problemy dotyczące również pozostałych
przedmiotów nauczanych w szkole i innych sfer działalności człowieka.

158

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Z dziedziny fizyki można rozważyć np. zagadnienie spadku swobodnego ciał,
z zakresu geografii – znajdowanie wśród danego zbioru punktów (współrzędnych
geograficznych) tych wysuniętych najbardziej na południe, a z obszaru języków
(zarówno polskiego jak i obcych) – tworzenie losowych zdań, w których
poszczególne elementy (podmiot, orzeczenie i dopełnienie) pochodzą
z określonych zbiorów słów i muszą zostać użyte w odpowiedniej formie.

W ten sposób pokazujemy, że informatyka integruje się z niemal wszystkimi
innymi dziedzinami i staje się ich nieodłącznym elementem. W uczniach, którzy
widzą jej konkretne zastosowania, wzbudzamy zainteresowanie tą dziedziną.

Większość nauczycieli informatyki posiada przeważnie inne kierunkowe
wykształcenie, a przygotowanie do nauczania informatyki uzyskali na studiach
podyplomowych. Niech zatem każdy ze słuchaczy zaproponuje problem
do rozwiązania z wykorzystaniem metod algorytmicznych z zakresu dziedziny,
w której zdobył wykształcenie.

6.3.	Wykorzystanie języków programowania do sterowania (np. robotem
lub obiektem na ekranie)

Ta część szkolenia jest zależna od możliwości placówki organizującej szkolenie –
od tego, czy i jakim sprzętem dysponuje. Szkolenie nauczycieli powinno zawierać
elementy oparte na wykorzystaniu języka programowania do sterowania. To, czym
będziemy sterować (np. robotem), czy będziemy programować (np. układ Arduino),
zależy głównie od możliwości placówki. Na rynku jest dostępnych wiele różnych
robotów z możliwością ich programowania w języku wizualnym lub tekstowym.

Sterowanie nie musi ograniczać się tylko do zastosowania robotów.
Micro:bit to niepozorna płytka urządzenie, która mieści się w kieszeni, a jest
mikrokomputerem zaprojektowanym do pracy z dziećmi i młodzieżą. Można
zaprogramować go w języku wizualnym lub tekstowym. Jednym z możliwych
języków jest Python, co stanowi dużą zaletę. Programujemy, używając komputera,
a następnie przesyłamy gotowy kod do urządzenia. Podobnie działają: BeCreo
i Arduino – modułowe zestawy do nauki programowania z elementami robotyki.

Jeśli placówka nie dysponuje żadnym sprzętem, to nie należy rezygnować
z tematyki sterowania obiektem. W takiej sytuacji sterujemy obiektem na ekranie.
Obiekt poruszający się po ekranie może rysować lub wchodzić w interakcje
z innymi obiektami – możliwości jest bardzo wiele. Na stronie konkursu

159

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

http://logia.oeiizk.waw.pl/ znajdziemy wiele trudniejszych zadań związanych
ze sterowaniem obiektem na ekranie i przetwarzaniem struktur danych.

Zasoby do wykorzystania:
¨¨ Strona konkursu „Logia”: http://logia.oeiizk.waw.pl/;
¨¨ Strona zestawu BeCreo: http://becreo.eu/index.php/pl/.

7.	 Podsumowanie

Szkolenie koncentruje się na umiejętnościach, jakie uczeń zdobywa na II etapie
edukacyjnym. Uczestnicy szkolenia powinni także otrzymać informacje o tym,
czego uczniowie będą się uczyć na kolejnym etapie edukacyjnym w szkole
ponadpodstawowej i jakie zmiany niesie w tym obszarze reforma oświaty.
Warto także przedstawić zasady organizacji egzaminu maturalnego z informatyki.

Podczas szkolenia wykorzystuje się język Python. Należy przedstawić uczestnikom
także inne języki tekstowe, które mogą być alternatywnie wykorzystywane,
np. Java, JavaScript, Processing, C++. Warto przeprowadzić krótką dyskusję
na temat funkcjonalności tych języków oraz wyboru języka właściwego
do realizacji podstawy programowej w zależności od poziomu i możliwości
uczniów, a także umiejętności zdobytych przez nich w niższych klasach.

Podstawa programowa zakłada stopniowe przechodzenie na poziomie klasy 7
na język tekstowy. Można także realizować podstawę, używając języka wizualnego
– zwłaszcza gdy wcześniej uczniowie mieli mało zajęć dotyczących algorytmiki
i programowania. Należy wówczas wykorzystać środowisko, które umożliwia
definiowanie funkcji zwracających wynik, np. Google Blockly lub Snap!

Może okazać się, że napotykamy grupę uczniów wyjątkowo zdolnych i/lub
wyjątkowo zainteresowanych omawianymi tu treściami. Warto zainspirować ich
do dalszej pracy. Pomocne będą tu strony konkursów i olimpiad informatycznych
oraz strony powiązane z nimi. Stanowią one obszerną bazę zadań, często
posiadają też w swych zasobach kursy związane z algorytmiką czy omówienia
zadań konkursowych. Niektóre portale umożliwiają wysyłanie rozwiązanych
zadań i automatyczne ich sprawdzanie. Linki do poszczególnych portali zostały
podane poniżej. Warto wskazać je uczestnikom szkolenia i krótko omówić.
Istotne, by nauczyciele zachęcali swoich uczniów do udziału w konkursach
informatycznych. Dają one uczniom możliwości rozwoju w dziedzinie informatyki
także poza regularnymi zajęciami w szkole.

http://becreo.eu/index.php/pl/

160

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Zasoby do wykorzystania:
¨¨ Strona konkursu „LOGIA”: http://logia.oeiizk.waw.pl/;
¨¨ Strona konkursu „Bóbr”: https://www.bobr.edu.pl/

(kategoria „Junior” dla uczniów klas 7–8);
¨¨ Strona konkursu „Koala”: http://jasijoasia.edu.pl/koala/index.htm;
¨¨ Strona Olimpiady Informatycznej Gimnazjalistów: http://oig.edu.pl/

(omówienia zadań);
¨¨ Strona Olimpiady Informatycznej: https://www.oi.edu.pl/

(zakładki: książeczki, linki);
¨¨ Strona Młodzieżowej Akademii Informatycznej: https://main2.edu.pl/news/

(kursy, zadania, możliwość wysyłania i sprawdzania zadań);
¨¨ Portal treningowy Olimpiady Informatycznej: https://szkopul.edu.pl/

(kursy, zadania, możliwość wysyłania i sprawdzania zadań);
¨¨ Portal sphere online judge http://pl.spoj.com/

(zadania, konkursy, możliwość wysyłania i sprawdzania zadań);
¨¨ Akademia Khana: https://pl.khanacademy.org/

(informatyka, algorytmy).

http://oig.edu.pl/

161

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Przykładowe scenariusze zajęć

Scenariusz 1: Od bloków do programowania tekstowego –
na przykładzie algorytmu Euklidesa

Opis zajęć

Głównym celem zajęć jest przedstawienie, jak można, pracując z uczniami, płynnie
przejść od programowania wizualnego do tekstowego. Rozważamy problem
znalezienia największego wspólnego dzielnika dwóch liczb naturalnych. Na początku
zajęć formułujemy problem, określamy dane i oczekiwany wynik, zaproponowane
rozwiązanie zapisujemy w postaci algorytmu w pseudokodzie. Algorytm zostanie
zaimplementowany najpierw w Scratchu, a następnie w środowisku Google Blockly,
które umożliwia automatyczną zamianę m. in. na język Python. Kolejnym krokiem
będzie wprowadzenie funkcji oraz modyfikacja algorytmu.

Czas trwania

90 minut

Realizacja

Zaczynamy od sformułowania problemu. Dane są dwie liczby naturalne większe od
zera, chcemy znaleźć ich największy wspólny dzielnik. W szkole pojęcie największego
wspólnego dzielnika jest wprowadzane wcześniej na matematyce. Warto
przedyskutować, jak uczniowie znajdują tradycyjnie największy wspólny dzielnik.

Na przykład dzielniki liczby 180 to: 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36,
45, 60, 90 oraz 180, a dzielniki liczby 42 to: 1, 2, 3, 6, 7, 14, 21 oraz 42. Czyli
wyznaczamy dzielniki obu liczb i poszukujemy największej liczby występującej wśród
dzielników obu liczb. W powyższym przykładzie widzimy, że taką liczbą jest 6.

Wypisywanie wszystkich dzielników każdej z dwóch danych liczb jest
czynnością żmudną i nie wydaje się konieczne – np. widać, że szukany
największy wspólny dzielnik nie może być większy od mniejszej z liczb (więc
w powyższym przykładzie nie ma sensu branie pod uwagę liczb: 45, 60, 90
oraz 180, będących dzielnikami 180). Algorytm związany z wypisywaniem
(pamiętaniem) wszystkich dzielników byłby niewygodny do zapisania, ze
względu na konieczność użycia dodatkowych struktur danych. Można myśleć

162

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

o algorytmie, w którym analizujemy – w kolejności malejącej – kolejne liczby od
mniejszej z dwóch danych liczb ku jedynce i szukamy pierwszej takiej, która jest
dzielnikiem obu. Jednak to także wydaje się być postępowaniem nieefektywnym.
Po przedyskutowaniu różnych możliwych rozwiązań, koncentrujemy się
na algorytmie Euklidesa. Możemy skorzystać z wizualizacji algorytmu dostępnej
na stronie http://programowanie.oeiizk.edu.pl/ (zakładka „Processing”).

Uwaga: Powyższą część zajęć można pominąć, jeśli uczestnikom szkolenia
(uczniom) jest już znany algorytm Euklidesa na odejmowanie (zagadnienia te
były omawiane na wcześniejszych zajęciach). Wówczas przechodzimy od razu
do zapisu algorytmu w pseudokodzie i implementacji w Scratchu.

Dane: a, b — liczby całkowite dodatnie.
Wynik: największy wspólny dzielnik liczb a i b.
dopóki a ≠ b wykonuj

jeżeli a > b
a ← a – b

w przeciwnym przypadku
b ← b – a

wypisz a

Rysunek 7. Algorytm Euklidesa na odejmowanie (Scratch)

163

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Dane wprowadzone do programu w powyższym przykładzie są stałymi liczbami,
których zmiana wymaga modyfikacji kodu. Możemy zastąpić przypisanie stałych
wartości ich podaniem przez użytkownika.

Podobnie proces wpisywania wyniku może zostać rozbudowany. Warto wyróżnić
trzy etapy:

•	 określenie danych,
•	 właściwą realizację algorytmu,
•	 wypisanie wyniku.

Koncentrujemy się w tym scenariuszu na algorytmie, więc rozbudowywanie obsługi
wejścia/wyjścia nie jest aż tak istotne. Pozostaniemy przy dwóch stałych liczbach.

Zapisujemy jeszcze raz ten sam algorytm, korzystając z innego narzędzia
do programowania wizualnego – Google Blockly
(https://blockly-demo.appspot.com/static/demos/code/index.html?lang=pl,
łatwiej wpisać w wyszukiwarkę Google Blockly Demo Code i otworzyć z poziomu
wyszukiwarki).

Rysunek 9. Algorytm Euklidesa na odejmowanie (Google Blockly)

Rysunek 8. Określenie danych

164

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

W Google Blockly możemy automatycznie przetłumaczyć kod na różne języki,
w tym na język Python. Wystarczy kliknąć w wybraną zakładkę.

Poniżej znajduje się algorytm zapisany w Pythonie wygenerowany automatycznie
(z pominięciem dwóch pierwszych wierszy).

Powyższy kod można przekopiować do pliku i uruchomić w środowisku
Python. Większość języków programowania ma możliwość tworzenia funkcji
pozwalających na zapamiętanie ciągu poleceń pod pojedynczą nazwą,
z możliwością podania parametrów – danych. Szczególnie godne polecenia są
języki, w których istnieje możliwość tworzenia funkcji, które oprócz danych
wejściowych mają możliwość udostępnienia wyniku modułowi wywołującemu.

W języku Scratch możemy tworzyć nowe bloki, a nawet przekazywać do nich
parametry. Niestety nie ma on możliwości tworzenia funkcji, czyli przekazywania
wyników działania do bloku, który ją wywołuje. Komunikacja jest możliwa
jedynie za pomocą zmiennych globalnych. Praktyka ta generuje złe intuicje,
gdyż zaburza rozumienie przepływu danych w pisanym programie.

Zastosujmy mechanizm funkcji do zapisu algorytmu Euklidesa w języku
Python. Na początku zapisu pojawia się nowy wiersz stanowiący nagłówek
funkcji – znajduje się w nim informacja o nazwie funkcji i o jej dwóch

Rysunek 10. Zakładki Google Blockly

Rysunek 11. Algorytm Euklidesa na odejmowanie (Python – kod generowany automatycznie)

165

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

parametrach – danych. Po obliczeniu wyniku, nie jest on wypisywany, ale
udostępniany modułowi wywołującemu jako wynik funkcji.

1. def nwd(a, b):

2. while a != b:

3. if a > b:

4. a = a - b

5. else:

6. b = b - a

7. return a

Powyższy kod może zostać także automatycznie wygenerowany z poziomu
Google Blockly – w tym środowisku można definiować funkcje zwracające wynik.
W zależności od poziomu wiedzy słuchaczy (uczniów) można skorzystać z tej
możliwości. Dalsze przykłady będą zapisywane jedynie w języku Python.

Zastanawiamy się nad sprawnością działania algorytmu: czy można go poprawić,
aby wykonywał mniej operacji? Warto na tablicy ręcznie (lub w arkuszu
kalkulacyjnym) wykonać algorytm na odejmowanie, np. dla liczb: 1024 i 48. Jedna
liczba jest znacznie większa od drugiej i wielokrotnie zmniejszamy pierwszą
liczbę (otrzymując po kolei 976, 928, …, 16). Szybko zauważamy, że możemy
wielokrotne odejmowanie zastąpić resztą z dzielenia. Wówczas wynik otrzymamy
dużo sprawniej. Należy zwrócić uwagę, kiedy zmodyfikowany algorytm się
kończy. Poprzednio obie liczby były równe, teraz jedna z nich przyjmuje wartość
zero. Wynik będzie dostępny w zmiennej, która nie uległa wyzerowaniu.

dopóki a ≠ 0 i b ≠ 0 wykonuj
jeżeli a > b

a ← a mod b
w przeciwnym przypadku

b ← b mod a
jeżeli a > b

zwróć a
w przeciwnym przypadku

zwróć b

mod (modulo) to popularne oznaczenie operacji arytmetycznej: reszta z dzielenia.
Zauważmy, że warunek pętli możemy zapisać prościej. Jeśli obydwie liczby mają

166

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

być różne od zera, to ich iloczyn też. Analogicznie z wynikiem – jeśli mamy
zwrócić niezerową wartość, to wynikiem może być suma liczb, z których jedna
jest zerem.

dopóki a * b ≠ 0 wykonuj
jeżeli a > b

a ← a mod b
w przeciwnym przypadku

b ← b mod a
zwróć a + b

1. def nwd(a, b):

2. while a * b != 0:

3. if a > b:

4. a = a % b

5. else:

6. b = b % a

7. return a + b

Sam zapis można jeszcze usprawnić, formułując algorytm bez użycia instrukcji
warunkowej. Zakładamy, że pierwsza liczba jest większa. Jeśli nie, to pierwszy
obrót pętli dokonuje tylko zamiany wartości zmiennych.

1. def nwd(a, b):

2. while b != 0:

3. pom = b

4. b = a % b

5. a = pom

6. return a

Pamiętajmy, żeby każdą wersję programu testować, czyli wywoływać funkcję dla
różnych danych. Pozwala to poprawić ewentualne błędy.

Podsumowanie

Algorytm Euklidesa został wybrany w tym scenariuszu ze względu na jego
znaczenie dla informatyki oraz edukacji, a także z powodu prostoty jego zapisu

167

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

z wykorzystaniem pętli warunkowej i instrukcji warunkowej. Może on też
stać się punktem wyjścia do dyskusji na temat kosztu czasowego (złożoności
obliczeniowej) zmieniającego się w zależności od zastosowanej metody.
Podobny scenariusz zajęć, wprowadzający płynne przejście od języka wizualnego
do tekstowego, można oczywiście zrealizować na przykładzie innego algorytmu
dotyczącego obliczeń na liczbach całkowitych. Jako rozszerzenie możemy
zaproponować rozwiązanie jakiegoś zadania z wykorzystaniem algorytmu
znajdowania największego wspólnego dzielnika.

Przykład zadania:
Kupujemy spodki i filiżanki. Spodki są pakowane po 8 sztuk, a filiżanki po 6 sztuk.
Jaką najmniejszą liczbę opakowań spodków, a jaką filiżanek należy kupić, by
po postawieniu wszystkich filiżanek na spodkach nie pozostał ani jeden spodek?
W tym zadaniu należy wyznaczyć najmniejszą wspólną wielokrotność dwóch
danych liczb – a do tego przyda się umiejętność wyznaczenia największego
wspólnego dzielnika.

Scenariusz 2 – Anagramy

Opis zajęć

Głównym celem zajęć jest ukazanie zastosowania poznanych wcześniej metod,
związanych z przetwarzaniem i porządkowaniem danych. Rozważany problem
polega na sprawdzeniu, czy dwa słowa są swoimi anagramami.

Czas trwania

45 minut

Realizacja

Zaczynamy od sformułowania problemu oraz określenia danych i spodziewanego
wyniku. Dane są dwa słowa (napisy bez spacji) złożone z małych liter alfabetu
łacińskiego. Chcemy sprawdzić, czy są swoimi anagramami. Dane słowo jest
anagramem drugiego, jeśli składa się z tych samych liter ułożonych w innej
kolejności (jest permutacją jego liter). Na przykład anagramami są słowa:
barok, kobra i robak, a także słowa: markotny i romantyk. Wynikiem jest wartość
logiczna True (prawda) kiedy dane słowa są anagramami lub wartość False
(fałsz) – w przeciwnym przypadku. Zastanawiamy się wspólnie ze słuchaczami

168

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

(uczniami) nad algorytmem (algorytmami) rozwiązania problemu. Mogą paść różne
propozycje. Analizujemy je.

Ponieważ jedno słowo miało powstać z drugiego przez zamianę kolejności liter,
możemy próbować przestawiać litery jednego słowa, aby otrzymać drugie.
Problem sprowadza się do tworzenia kolejnych słów poprzez przestawianie liter
(czyli generowanie kolejnych permutacji) i porównywania z drugim słowem.
Takie rozwiązanie wydaje się zawiłe i trudne do realizacji. Może więc można
poprzestawiać litery jednego i drugiego słowa, tak aby otrzymać dwa identyczne?
A jeśli nie są identyczne, żeby można było stwierdzić, że dane dwa słowa nie są
swoimi anagramami. Zauważamy, że możemy litery obydwu wyrazów ustawić
alfabetycznie (czyli posortować) i porównać otrzymane słowa.

Poznaliśmy już metodę sortowania przez wybór. Można ją tu zastosować
do uporządkowania liter. Wiele języków oferuje gotowe polecenia
do porządkowania elementów, także Python. W przedstawionym poniżej
rozwiązaniu wykorzystamy tę metodę.

Uwaga: Język Python traktuje napisy (stringi) inaczej niż inne języki, w których
napis jest traktowany jak tablica znaków. Nie można w prosty sposób zamieniać
(przestawiać znaków napisu). Należy zatem zamienić napis na listę znaków.

1. def anagramy(a, b):

2. a=list(a); a.sort()

3. b=list(b); b.sort()

4. return a == b

Inny pomysł, jaki może się pojawić w dyskusji, to zliczenie częstotliwości
wystąpień poszczególnych liter. Nie musimy później tworzyć posortowanych
napisów (czyli sortować przez zliczanie), wystarczy porównać, czy częstości są
takie same. Do zliczania wykorzystujemy pomocnicze tablice (listy). Małych
liter alfabetu łacińskiego jest 26, więc tablica będzie indeksowana od 0 do 25.
Musimy przyporządkować każdej literze liczbę z tego zakresu. Używamy kodów
ASCII (ang. American Standard Code for Information Interchange) –jeśli na zajęciach
nie była wcześniej omówiona reprezentacja znaków, należy to w tym miejscu
zrobić. Małe litery alfabetu łacińskiego mają kody zaczynające się od 97,
więc wystarczy od kodu litery odjąć 97. Na początku należy utworzyć tablicę

169

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

26 liczników i ją wyzerować. Następnie przeglądamy słowo litera po literze
i powiększamy właściwy licznik o 1.

Zliczanie częstotliwości liter stanowi osobny problem, ponadto musimy zliczyć
częstotliwości dla dwóch słów. Dlatego definiujemy pomocniczą funkcję.

1. def zlicz(a):

2. licz = [0 for i in range(26)]

3. for litera in a:

4. licz[ord(litera) - 97] += 1 #zwiększenie wartości zmiennej o 1

5. return licz

6.

7. def anagramy(a, b):

8. zlicz_a = zlicz(a)

9. zlicz_b = zlicz(b)

10. return zlicz_a == zlicz_b

Podsumowanie

Na tych zajęciach przetwarzaliśmy napisy, zastosowaliśmy zliczanie i sortowanie
do rozwiązania problemu. Operowaliśmy także kodami znaków ASCII.
Zastosowaliśmy dwa różne algorytmy rozwiązywania problemu. Mimo że zarówno
sam problem, jak i algorytmy jego rozwiązania mogą się wydawać skomplikowane,
ich implementacja w języku programowania Python jest niezwykle prosta.
Proponowane rozszerzenie tej problematyki dla uczniów zdolnych stanowić może
propozycja przygotowania bazy – listy słów, a następnie wyszukania dla danego
słowa wszystkich jego anagramów z listy. Bardziej złożonym zadaniem może być
wyszukanie wszystkich par słów – anagramów znajdujących się na liście.

170

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Przykładowe zadania

Zadanie 1: „Przeliteruj” liczbę

Zadanie polega na wypisaniu cyfr liczby w kolejności od ostatniej (najmniej
znaczącej) do pierwszej (najbardziej znaczącej). Np. dla liczby 2018 należy kolejno
wypisać: 8, 1, 0 i 2. Zadanie to było już rozwiązywane podczas pierwszej części
szkolenia dla klas 4–6 i zapisane w języku Scratch. Warto jednak ponownie je
rozwiązać, programując tym razem rozwiązanie w języku Python. Analogicznie
jak poprzednio, wykorzystujemy podstawowe działania arytmetyczne, najpierw
zapisując algorytm w pseudokodzie.

Dane: a — liczba całkowita dodatnia.
Wynik: cyfry liczby a w kolejności od najmniej znaczącej.

dopóki a > 0 wykonuj
wypisz a mod 10
a = a div 10

mod oznacza resztę z dzielenia, a div dzielenie całkowite.

1. def wyp_cyf(a):

2. while a > 0:

3. print(a % 10)

4. a = a // 10

Porównując rozwiązania w Scratchu i Pythonie, zwracamy uwagę, że w Pythonie
mamy do dyspozycji operację dzielenia całkowitego (//).

Zadanie 2: Najmniejsza suma

Wyszukujemy najmniejszą liczbę całkowitą dodatnią, która nie jest sumą
liczb znajdujących się w podanym uporządkowanym niemalejąco ciągu liczb
naturalnych. Na przykład dla ciągu: [1, 2, 3, 4, 100] wynikiem jest 11,
a dla [1, 1, 2, 3, 5, 18, 21] wynikiem jest 13. Przeglądamy kolejne elementy ciągu
i rozważamy, które liczby można otrzymać w wyniku ich sumowania. Zauważamy,
że jeśli w danej liście początkowym elementem nie jest jedynka, to poszukiwaną
liczbą jest 1 (bo na pewno nie da się uzyskać jedynki w wyniku sumowania
kolejnych liczb, gdyż są większe niż 1, ze względu na uporządkowanie ciągu).

171

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Natomiast jeżeli jedynka jest początkowym elementem ciągu, to analizujemy dalej.
Trzeba zauważyć, że aby w wyniku sumowania udało się uzyskać liczbę 2, drugim
elementem ciągu musi być 1 lub 2. W pierwszym z tych przypadków liczbę 2
uzyskujemy, sumując dwie jedynki, a w drugim – po prostu wskazujemy dwójkę.

Po chwili zastanowienia dochodzimy do wniosku, że w wyniku sumowania uda się
uzyskać każdą z liczb od 1 do sumy wszystkich przejrzanych wcześniej wyrazów
ciągu. Po przejrzeniu pewnej liczby wyrazów mamy zatem dwie możliwości:

1)	 kolejnym wyrazem ciągu jest liczba równa co najwyżej sumie wcześniejszych
wyrazów ciągu, powiększonej o 1 – wówczas kontynuujemy przeglądanie;

2)	 kolejny wyraz ciągu jest większy o więcej niż 1 od sumy poprzednich
(przejrzanych) wyrazów – w tej sytuacji, skoro nie da się uzyskać w wyniku
sumowania liczby większej o 1 niż dotychczasowa suma, to poszukiwaną
liczbą jest ta suma powiększona o 1.

Zapis w pseudokodzie może być następujący:
Dane: n — liczba całkowita dodatnia,

a — uporządkowany niemalejąco ciąg liczb naturalnych o długości n
Wynik: najmniejsza liczba całkowita dodatnia niebędąca sumą liczb z ciągu a

suma = 0
i = 0
dopóki a[i] <= suma + 1 wykonuj

suma = suma + a[i]
i = i + 1

zwróć suma + 1

Zastanówmy się, czy powyższy algorytm jest prawidłowy. Czy można podać dane,
dla których działa błędnie? Jeśli uczestnicy nie potrafią wskazać błędu, warto
zapisać powyższy algorytm w Pythonie i uruchomić – np. dla danych: [1, 2, 3, 4].

Zapomnieliśmy o tym, że ciąg — lista stanowiąca daną – jest skończony.
Jeśli w wyniku analizy kolejnych elementów listy, akceptując je, dojdziemy do jej
końca, to podczas wykonywania funkcji pojawi się błąd – próba odwołania
do nieistniejącego elementu listy. Musimy poprawić ten błąd. Modyfikujemy
warunek kontynuowania pętli tak, by zatrzymała się najpóźniej wówczas, gdy
dojdziemy do końca listy.

172

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

suma = 0
i = 0
dopóki i < n oraz a[i] <= suma + 1 wykonuj

suma = suma + a[i]
i = i + 1

zwróć suma + 1

1. def nsc(a):

2. suma = 0

3. i = 0

4. while i < len(a) and a[i] <= suma + 1:

5. suma = suma + a[i]

6. i = i + 1

7. return suma + 1

Nowy warunek pętli jest dość skomplikowany. Należy zwrócić uwagę na kolejność
podwarunków. Zmiana kolejności spowodowałaby błąd wykonania – nadal
próbowalibyśmy odwołać się do elementu tablicy położonego za ostatnim, czyli
nieistniejącego. W wielu językach programowania, w tym w Pythonie, warunki
logiczne, o ile nie zachodzi taka konieczność, nie są wyliczane „do końca”. W tym
przypadku – jeśli pierwszy człon koniunkcji jest fałszywy (tj. zanalizowaliśmy już
wszystkie elementy listy), wartość drugiego członu nie jest wyliczana, bo i tak
całość ma wartość: fałsz.

Możemy uniknąć tego problemu, wykonując pętlę n razy i kończąc obliczenia
we wnętrzu pętli w momencie, kiedy znamy już szukaną sumę.

suma = 0
dla i = 0, … , n-1 wykonuj

jeżeli a[i] <= suma + 1
suma = suma + a[i]

w przeciwnym przypadku
zwróć suma + 1

zwróć suma + 1

173

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

1. def nsc(a):

2. suma = 0

3. for i in range(len(a)):

4. if a[i] <= suma + 1:

5. suma = suma + a[i]

6. else:

7. return suma + 1

8. return suma + 1

Powyższe zadanie stanowi przykład problemu, w którego rozwiązywaniu
najistotniejszy okazuje się dobór algorytmu. Nie trzeba badać wszystkich
możliwych do uzyskania sum – zresztą byłoby to bardzo czasochłonne. Sam zapis
algorytmu jest bardzo krótki i zwarty.

Zadanie 3: Liczba doskonała

Zadanie polega na znalezieniu n–tej liczby doskonałej, dla danego całkowitego
n > 0. Liczba doskonała to taka liczba naturalna, której suma dzielników
właściwych (tj. mniejszych od niej) jest równa tej liczbie. Pierwszą (najmniejszą)
taką liczbą jest 6 (6=1+2+3), drugą 28 (28=1+2+4+7+14). Określenie następnych
to zadanie dla komputera, trzeba bowiem wykonać wiele działań.

Algorytm opiera się na liczeniu sumy dzielników właściwych kolejnych liczb
(„kandydatów” na liczby doskonałe) i zliczaniu znalezionych liczb. Gdy osiągniemy
wartość n, wynikiem jest ostatnia analizowana liczba. Zapis algorytmu
w pseudokodzie wygląda następująco:

Dane: n — liczba całkowita dodatnia.
Wynik: liczba będąca n-tą liczbą doskonałą.

kandydat = 1
licznik = 0
dopóki licznik < n wykonuj

kandydat = kandydat + 1
jeżeli suma_dw(kandydat) = kandydat

licznik = licznik + 1
zwróć kandydat

174

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Projektując algorytm, nie zajmowaliśmy się szczegółami – jak policzyć sumę
dzielników właściwych. Jako pomocnicze ćwiczenie warto wykonać zadanie
polegające na wypisaniu wszystkich dzielników właściwych. Można zauważyć,
że potencjalne dzielniki pochodzą z zakresu od 1 do połowy liczby.

dla d = 1, … , liczba div 2 wykonuj
jeżeli liczba % d = 0

wypisz d

1. def wypisz_dw(liczba):

2. for d in range(1, liczba//2 + 1):

3. if liczba % d == 0:

4. print(d)

Zamiast wypisywać będziemy sumować dzielniki. Wartością początkową sumy
może być wartość 1, a pierwszym potencjalnym dzielnikiem liczba 2.

suma = 1
dla d = 2, … , liczba div 2 wykonuj

jeżeli liczba % d = 0
suma = suma + d

zwróć suma

1. def suma_dw(liczba):

2. suma = 1

3. for d in range(2, liczba//2 + 1):

4. if liczba % d == 0:

5. suma = suma + d

6. return suma

Uruchamiamy funkcję. Dla parametrów: 1, 2 i 3 wynik pojawia się szybko, dla 4 –
musimy trochę poczekać, a dla 5 – wyliczenia trwają nieznośnie długo.
Powinniśmy zatem poprawić efektywność algorytmu. Udoskonalamy działanie
funkcji liczącej sumę dzielników właściwych. Zauważamy, że jeśli pewna liczba
d jest dzielnikiem n, to jest nim również n/d. Od razu do wyliczanej sumy
dzielników dodajemy oba znalezione dzielniki. Widzimy, że nie trzeba sprawdzać
wszystkich liczb od 1 do n/2, wystarczy zatrzymać się przy wartości pierwiastka

175

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

kwadratowego z n. Dbamy o to, aby pierwiastek z danej liczby, o ile jest całkowity,
został uwzględniony w sumie dzielników, ale tylko jednokrotnie.

suma = 1
d = 2
dopóki d * d < liczba wykonuj

jeżeli liczba % d = 0
suma = suma + d + liczba div d

d = d + 1
jeżeli d * d == liczba

suma = suma + d
zwróć suma

1. def suma_dw(liczba):

2. suma = 1

3. d = 2

4. while d * d < liczba:

5. if liczba % d == 0:

6. suma = suma + d + liczba // d

7. d = d + 1

8. if d * d == liczba:

9. suma = suma + d

10. return suma

Po dokonaniu poprawek wyliczenia trwają istotnie krócej. Zadanie pozwala
doświadczyć, że efektywność przyjętego algorytmu ma praktyczne znaczenie.
Wdrażamy uczestników szkolenia do pisania własnych funkcji i podziału
rozwiązywanego problemu na podproblemy.

176

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Zadanie 4: Trójkąty

Dany jest co najmniej trzyelementowy zbiór liczb określających długości
odcinków. Czy z każdego zestawu trzech odcinków o długościach wziętych
z tego zbioru można zbudować trójkąt? Trójkąt da się zbudować, gdy suma
dugości dwóch dowolnych odcinków będzie liczbą większą od długości trzeciego.

Naszej uwadze narzuca się algorytm, w którym analizujemy wszystkie możliwe
trójki liczb wziętych ze zbioru. Implementacja tego algorytmu wymaga trzech
zagnieżdżonych pętli, a przy dużym rozmiarze danych wykonanie programu
trwałoby bardzo długo (warto przy okazji policzyć, ile jest możliwych trójek i jak
szybko rośnie ich liczność przy zwiększaniu liczby elementów zbioru). Istnieją
jednak bardziej efektywne algorytmy. Na przykład: jeśli uporządkujemy elementy
w zbiorze od najmniejszego do największego, wystarczy sprawdzić tylko jedną
trójkę, składającą się z dwóch pierwszych elementów i elementu ostatniego.

Można także zauważyć, że porządkowanie całego zbioru nie jest niezbędne –
wystarczy znaleźć w zbiorze dwa najmniejsze elementy i element największy.
Jeśli suma dwóch najmniejszych okaże się większa od największego, to z każdych
trzech odcinków o długościach wziętych ze zbioru można zbudować trójkąt.

Poszukiwanie dwóch najmniejszych elementów i elementu największego można
przeprowadzić podczas jednokrotnego przejrzenia danej listy. Przyglądamy się
dwóm pierwszym elementom listy – mniejszy z nich jest początkowym
„kandydatem” na najmniejszą wartość z całej listy, a większy jest początkowym
„kandydatem” na drugą najmniejszą wartość z całej listy (tj. najmniejszą wśród
pozostałych) oraz na największą wartość z całej listy.

Następnie przeglądamy pozostałe elementy listy i odpowiednio modyfikujemy
wartości zmiennych pomocniczych. Po przejrzeniu całej listy zmienne: min1
i min2 zawierają wartości dwóch najmniejszych elementów listy, a zmienna
maks – wartość największego elementu listy. Wystarczy teraz sprawdzić warunek
trójkąta dla tej trójki liczb i określić wynik.

177

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

1. def trojkat(a):

2. if a[0] < a[1]:

3. min1 = a[0]

4. min2 = a[1]

5. maks = a[1]

6. else:

7. min1 = a[1]

8. min2 = a[0]

9. maks = a[0]

10. for i in range(2, len(a)):

11. if a[i] < min2:

12. if a[i] > min1:

13. min2 = a[i]

14. else:

15. min2 = min1

16. min1 = a[i]

17. else:

18. if a[i] > maks:

19. maks = a[i]

20. if min1 + min2 > maks:

21. return 'tak'

22. else:

23. return 'nie'

Zadanie na początku wydawało się trudne. Spodziewaliśmy się, że trzeba będzie
wykonać wiele obliczeń, aby uzyskać wynik. Okazało się jednak, że wystarczyło
przejrzeć jednokrotnie daną listę. Warto zatem poświęcić trochę czasu, aby
utworzyć i zapisać optymalny algorytm.

Zdefiniowana funkcja daje wynik będący słowem: „tak” lub „nie”. Jeśli w danej
grupie szkoleniowej poziom wiedzy uczestników jest wysoki, wykonując
to zadanie, warto wprowadzić pojęcie funkcji o wartości logicznej – wówczas
w programie zamiast ostatnich czterech wierszy wystarczy napisać:

20. return min1 + min2 > maks

178

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Zadanie 5: Pierwiastek kwadratowy

Dla danej liczby większej od 1 wyznacz jej pierwiastek kwadratowy
z dokładnością do 0,01. Do rozwiązania użyj arkusza kalkulacyjnego.

Arkusz dysponuje funkcją, która wylicza pierwiastek kwadratowy zadanej
liczby. W rozwiązywanym zadaniu nie chodzi jednak o wykorzystanie tej funkcji.
Rozwiązujący zadanie może skorzystać tylko z czterech podstawowych działań
arytmetycznych i liczenia wartości bezwzględnej.

Zauważamy, że pierwiastek jest większy od 1, a mniejszy od danej liczby.
Staramy się zawęzić zakres naszych poszukiwań (zwiększając lewy kraniec
przedziału lub zmniejszając prawy), aż do momentu, w którym długość przedziału
stanie się mniejsza niż 0,01 – wówczas na pewno dokładność wyliczenia będzie
równa 0,01 (lub wyższa).

W każdym kolejnym kroku wyliczamy środek przedziału (średnią arytmetyczną
lewego i prawego krańca) i sprawdzamy, czy po pomnożeniu wartości przez
siebie otrzymujemy daną liczbę – a może mniej lub więcej. Na tej podstawie
podejmujemy decyzję: jeśli otrzymamy mniej niż wynosi wartość danej
liczby – „przesuwamy” lewy kraniec przedziału na dotychczasowy środek,
a w przeciwnym przypadku – „przesuwamy” prawy kraniec przedziału
na dotychczasowy środek. Wynikiem jest dowolna z liczb z przedziału,
dla którego zakończyliśmy obliczenia. Możemy zapisać algorytm w pseudokodzie.

Dane: a — liczba większa od 1.
Wynik: pierwiastek kwadratowy z liczby a, wyznaczony z dokładnością do 0,01.

lewy ← 1
prawy ← a
dopóki prawy – lewy > 0,01 wykonuj

środek ← (lewy + prawy) / 2
jeżeli środek * środek < a

lewy ← środek
w przeciwnym przypadku

prawy ← środek
wypisz lewy

179

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Tworzymy arkusz w taki sposób, by pierwszy wiersz zawierał nagłówki (środek
przedziału, lewy kraniec, prawy kraniec, długość przedziału). W wierszu nr 2
wpisujemy jedynkę (komórka B2) i liczbę, której pierwiastek obliczamy (komórka
C2 zaznaczona na żółto, by użytkownik lepiej widział, gdzie ma wpisać daną).
W komórce D2 wpisujemy formułę =C2-B2. Komórce C2 przypisujemy nazwę:
dana (jeśli tego nie zrobimy, to dalej dla tej komórki trzeba będzie jawnie używać
adresowania bezwzględnego – C$2).

W wierszu nr 3 w pierwszej kolumnie obliczamy środek przedziału
na podstawie danych z poprzedniego wiersza (komórka A3 zawiera =(B2+C2)/2),
zaś w komórkach B3 i C3 obliczamy nowe krańce przedziału, w którym
szukamy pierwiastka (formuły odpowiednio =JEŻELI(A3*A3<dana;A3;B2)
i =JEŻELI(A3*A3<dana;C2;A3)). Formuły z komórek A3, B3, C3, D2 kopiujemy
(przeciągamy) w dół o kilkanaście wierszy.

Poszukując wyniku, znajdujemy pierwszy wiersz, w którym w kolumnie D
znajduje się wartość mniejsza niż 0,01. Dla danej 12 jest to wiersz nr 13.
Z tego wiersza odczytujemy zawartość komórki w kolumnie B – to jest wynik.
W przykładzie powyżej to: 3,4599609. Równie dobrze wynikiem mogłaby być
dowolna liczba z przedziału [3,4599609, 3,465332].

Rysunek 12. Obliczanie wartości pierwiastka kwadratowego metodą bisekcji

180

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Poniżej rozwiązujemy to samo zadanie innym sposobem. W tej metodzie również
zawężamy przedział, w którym znajduje się pierwiastek danej liczby. W kolejnym
kroku jako nowe krańce przedziału przyjmiemy środek i iloraz dzielenia danej
liczby przez środek. Możemy zinterpretować to graficznie: na początku mamy
prostokąt o długościach boków x=1 i y=a, chcemy tak zmieniać długości boków
prostokąta, aby otrzymać w przybliżeniu kwadrat o polu a.

Dane: a — liczba większa od 1
Wynik: pierwiastek kwadratowy z liczby a, wyznaczony z dokładnością do 0,01.

x ← 1
y ← a
dopóki | y – x | > 0,01 wykonuj

x ← (x + y) / 2
y ← a / x

wypisz x
Realizacja algorytmu w arkuszu może wyglądać następująco:

W wierszu nr 2 wpisujemy 1 (komórka A2) i liczbę, której pierwiastek obliczamy
(komórka B2 zaznaczona na żółto, by użytkownik lepiej widział, gdzie ma wpisać
daną). W komórce C2 wpisujemy formułę =MODUŁ.LICZBY(B2-A2).

Rysunek 14. Obliczanie wartości pierwiastka kwadratowego metodą Newtona-Raphsona

Rysunek 13. Obliczanie wartości pierwiastka kwadratowego metodą Newtona-Raphsona

181

Ramowy program szkolenia dla nauczycieli klas 7-8 (II ETAP EDUKACYJNY)

Komórce B2 przypisujemy nazwę: dana (jeśli tego nie zrobimy, to dalej dla tej
komórki trzeba będzie jawnie używać adresowania bezwzględnego – B$2).

W wierszu nr 3, w pierwszej kolumnie obliczamy środek przedziału na podstawie
danych z poprzedniego wiersza (komórka A3 zawiera =(A2+B2)/2), zaś
w komórce B3 iloraz, o którym mowa wyżej (formuła =dana/A3). Formuły
z komórek A3, B3, C2 kopiujemy (przeciągamy) w dół o kilkanaście wierszy. Wyniku
szukamy podobnie jak poprzednio. Dla danej 12 jest to na przykład 3,4646162.
Widzimy, że druga metoda wymaga mniej powtórzeń, pozwala szybciej uzyskać
wynik. Warto przedyskutować te spostrzeżenia z uczestnikami szkolenia.

Udało się nam pokazać praktyczne zastosowanie arkusza kalkulacyjnego
do rozwiązania problemu algorytmicznego. Warto także podkreślić,
że w pierwszym algorytmie stosowaliśmy metodę algorytmiczną poznaną przy
wyszukiwaniu elementu w zbiorze uporządkowanym.

182

Załącznik 1
Wymagania wstępne – kompetencje TIK

Zaprezentowane poniżej wymagania należy traktować jako wstępne. Oznacza
to, że odpowiednie kompetencje TIK powinien posiadać każdy nauczyciel, który
chce uczestniczyć w szkoleniu, zarówno dotyczącym poziomu klas 1–3, jak
i klas 4–6 oraz 7–8. Nie są to jednak wszystkie wymagania. Pozostałe z nich
opisane zostały w każdym z programów szkolenia w punkcie: Wymagania wstępne
stawiane uczestnikom szkolenia.

Uczestnik szkolenia:
1.	 Posługuje się sprawnie komputerem w zakresie zarządzania folderami

i plikami oraz uruchamiania programów.
2.	 Umie przeglądać informacje w internecie i wyszukiwać informacje online,

sprawnie posługuje się przeglądarką internetową.
3.	 Umie wyrazić swoje potrzeby informacyjne; umie selekcjonować właściwe

informacje pośród wyników wyszukiwania.
4.	 Umie porównać różne źródła informacji.
5.	 Wie, jak zapisać pliki i treści (na przykład teksty, zdjęcia, muzykę, pliki wideo

i strony internetowe). Wie, jak powrócić do zapisanych plików i treści.
6.	 Umie korzystać z kilku narzędzi komunikacji elektronicznej, aby kontaktować

się z innymi osobami, stosując zaawansowane funkcje tych narzędzi.
7.	 Umie dzielić się plikami i treściami z innymi osobami za pośrednictwem

różnych narzędzi (poczta elektroniczna, przesyłanie załączników; chmura,
dyski wirtualne).

8.	 Umie współpracować z innymi osobami, korzystając z możliwości TIK.
9.	 Zna zasady netykiety i umie je zastosować we własnych zachowaniach.

10.	 Umie kształtować własną tożsamość wirtualną i kontrolować swoje
ślady w sieci.

183

Wymagania wstępne – kompetencje TIK

11.	 Umie tworzyć treści cyfrowe w różnych formatach, na różnych platformach
i w różnych środowiskach, umie wykorzystać różnorodne narzędzia
cyfrowe, aby tworzyć oryginalne treści cyfrowe.

12.	 Umie edytować, przetwarzać i modyfikować treści stworzone przez siebie
lub przez innych.

13.	 Wie, w jaki sposób różne rodzaje licencji wpływają na informacje i zasoby,
których używa i które tworzy.

14.	 Wie, jak chronić swoje urządzenia cyfrowe (na przykład poprzez
instalowanie oprogramowania antywirusowego, stosowanie haseł), rozwija
znane sposoby dbania o bezpieczeństwo.

15.	 Umie zadbać o ochronę swoją i innych osób, rozumie ogólne zasady
ochrony danych osobowych, a także jest świadomy, w jaki sposób dane są
zbierane i wykorzystywane.

16.	 Wie, jak chronić siebie i innych przed cyberprzemocą, rozumie ryzyko dla
zdrowia wynikające z korzystania z TIK (od ergonomii po uzależnienie
od technologii).

17.	 Umie poprosić o wsparcie techniczne, kiedy narzędzia TIK nie działają
zgodnie z oczekiwaniami albo kiedy korzysta z nowych programów,
urządzeń lub aplikacji.

18.	 Umie korzystać w ograniczonym zakresie z TIK przy rozwiązywaniu
problemów, umie wybrać narzędzia cyfrowe do wykonywania
rutynowych zadań.

19.	 Wie, że narzędzia TIK mogą być twórczo używane, i potrafi je w ten sposób
wykorzystywać w określonym zakresie.

20.	 Posługuje się w ograniczonym zakresie arkuszem kalkulacyjnym
(budowanie formuł, obliczenia, tworzenie wykresów).

184

Załącznik 2
Wykaz adresów internetowych

Akademia Khana:
https://pl.khanacademy.org/ (informatyka, algorytmy)

Algorytm Euklidesa – aplikacja interaktywna,
http://programowanie.oeiizk.edu.pl (zakładka „Processing”)

Algorytm Euklidesa – pokaz:
http://programowanie.oeiizk.edu.pl (zakładka „Processing”)

Bank pomysłów koduj.gov:
http://koduj.gov.pl/

Blockly:
https://blockly-demo.appspot.com/static/demos/code/index.html?lang=pl

Blockly Games:
https://blockly-games.appspot.com/?lang=pl

Bloki ScratchJr:
https://www.scratchjr.org/pdfs/blocks.pdf

Code Academy (ang.):
https://www.codecademy.com/learn/learn-python

Dash i Dot:
http://nauczyciele.makewonder.pl/scenariusze-lekcji.html

185

WyKAZ ADRESÓW INTERNETOWYCH

Edukacja matematyczna:
https://www.digipuzzle.net/minigames/codegrid/codegrid_math_till_ten.
htm?language=english&linkback=../../education

Edukacja polonistyczna, plastyczna, społeczna, matematyczna:
http://superkoderzy.pl/scenariusze-lekcji/najmlodsi-programuja (lekcja 1)

Film Pythonowe początki:
https://www.youtube.com/watch?v=n-mFQ2JqO8o

„Godzina Kodowania” – instrukcja dla nauczyciela:
http://programowanie.oeiizk.edu.pl/ (zakładka „Godzina kodowania”)

Gra CodyRoby:
http://koduj.gov.pl/cody-roby-kodowanie-w-formie-gry-karcianej/

Grafika żówia:
http://python.oeiizk.edu.pl (zakładka: „Rysowanie z żółwiem”)

Gra „Scottie Go!”:
https://scottiego.pl/

Gra „Run Marco”:
https://www.allcancode.com/runmarco

„Gra w pomarańczę”:
https://www.youtube.com/watch?v=WforXEBMm5k

Interactive Python 3 tutorial (ang.):
https://snakify.org/

Jochemczyk W., Olędzka K., (2013), Python dla wszystkich, Toruń: Informatyka
w Edukacji:
http://python.oeiizk.edu.pl/ (zakładka: „O Pythonie”)

Jochemczyk W., Olędzka K., (2016), Ważenie a system binarny, Toruń: Informatyka
w Edukacji:
http://iwe.mat.umk.pl/archiwum/iwe2016//materials/II_Drukarnia_IwE/08.pdf

186

WyKAZ ADRESÓW INTERNETOWYCH

Karty pracy Scratcha:
https://scratch.mit.edu/info/cards

Karty pracy w ScratchJr (ang.):
https://www.scratchjr.org/teach/activities

Kodable – gra bezpłatna w wersji podstawowej:
https://game.kodable.com/

„Koduj z Klasą” materiały dotyczące Pythona:
http://python101.readthedocs.io/pl/latest/

„Kodujemy kolorowo” – kodowanie graficzne:
http://www.oswajamyprogramowanie.edu.pl/2017/10/kodujemy-kolorowo-
offlineowo.html

Konkurs Informatyczny „Bóbr”:
https://www.bobr.edu.pl/

Konkurs „Koala”:
http://jasijoasia.edu.pl/koala/index.htm

Konkurs „LOGIA”:
http://logia.oeiizk.waw.pl

Konkurs „miniLOGIA”:
http://minilogia.oeiizk.waw.pl

Kwiatkowska, A.B., (2016), W poszukiwaniu abstrakcyjnego modelu, Toruń:
Informatyka w Edukacji:
http://iwe.mat.umk.pl/archiwum/iwe2016//materials/II_Drukarnia_IwE/03.pdf

Lekcje programowania – instrukcje WSiP:
https://www.wsip.pl/e-spotkania/lekcje-programowania
https://www.wsip.pl/e-spotkania/lekcje-programowania-czesc-2

Lightbot:
http://lightbot.com/flash.html

187

WyKAZ ADRESÓW INTERNETOWYCH

mBot:
https://trobot.pl/sklep/makeblock-roboty-edukacyjne-dla-dzieci/
makeblock-mbot-v1-1-blue-bluetooth/?gclid=EAIaIQobChMIi6T
2k_vw3AIVTM-yCh3Fhge5EAAYASAAEgJmPPD_BwE

Młodzieżowa Akademia Informatyczna:
https://main2.edu.pl/news/

Olimpiada Informatyczna:
https://www.oi.edu.pl/ (zakładki: książeczki, linki)

Olimpiada Informatyczna Gimnazjalistów:
http://oig.edu.pl/ (omówienia zadań)

Ozobot:
https://www.edu-sense.com/pl/

Photon:
https://photonrobot.com/pl/

Portal sphere online judge:
http://pl.spoj.com/ (zadania, konkursy, możliwość wysyłania i sprawdzania zadań)

Portal treningowy Olimpiady Informatycznej:
https://szkopul.edu.pl/ (konkursy, zadania, możliwość wysyłania i sprawdzania zadań)

Projekt SP w Ząbkach:
http://modelnowoczesnejszkoly2017.sp3zabki.pl/
ramy-projektu-interdyscyplinarnego-p-t-zakazane-piosenki/

Projekty edukacyjne środowiska Scratch dla klas 1–3:
https://scratch.mit.edu/studios/4487110/

Projekty edukacyjne środowiska Scratch dla klas 4–6:
https://scratch.mit.edu/studios/4487107

Projekt „Computer Science Unplugged” film:
https://www.youtube.com/watch?v=voqghyZbZxo

188

WyKAZ ADRESÓW INTERNETOWYCH

Projekt „Dla Mamy”:
https://scratch.mit.edu/projects/188249692/

Projekt „Elektrownia wiatrowa”:
https://scratch.mit.edu/projects/85857008

Projekt „Mistrzowie Kodowania” – moduły:
http://programowanie.oeiizk.edu.pl/#!/mistrzowie_kodowania

Projekt „Wiatrak”:
https://scratch.mit.edu/projects/188318193/

Projekt „Śluza wodna”:
https://scratch.mit.edu/projects/85845238/

Środowisko wizualizacji programów w Pythonie:
http://pythontutor.com/

Materiały OEIiZK – „Python w szkole”:
http://python.oeiizk.edu.pl/

Rozmowa z prof. Mitchem Resnickiem z Massachusetts Institute of Technology
(MIT) na temat potrzeby kształcenia innowacyjnych i kreatywnych osób:
https://www.youtube.com/embed/sTXa7QUYxaI?rel=0

Samouczek Pythona:
http://www.learnpython.org/pl/

Scenariusze lekcji Super Koderzy:
http://superkoderzy.pl/scenariusze-lekcji/najmlodsi-programuja/

Scenariusze OEIiZK – zakładka „Warszawa programuje”:
http://programowanie.oeiizk.edu.pl/#!/wp_scratch

Scenariusze z projektu „Mistrzowie Kodowania”:
http://wiki.mistrzowiekodowania.pl/index.php?title=Strona_g%C5%82%C3%B3wna

Scenariusze „Informatyka dla Jasia i Joasi”
http://jasijoasia.edu.pl/

189

WyKAZ ADRESÓW INTERNETOWYCH

Scenariusz ćwiczeń „Pierwsze kroki w Scratchu”:
http://programowanie.oeiizk.edu.pl (zakładka „Mistrzowie Kodowania”)

„Słowniczek bloczków” i opis środowiska Scratch:
http://programowanie.oeiizk.edu.pl/ (zakładka „Warszawa programuje!”)

Sortowanie – film:
https://www.youtube.com/watch?v=cVMKXKoGu_Y

Strona domowa Scratch Junior:
https://www.scratchjr.org/

Strona domowa środowiska Scratch:
https://scratch.mit.edu

Strona internetowa Ośrodka Edukacji Informatycznej i Zastosowań Komputerów:
http://programowanie.oeiizk.edu.pl/, (zakładka „Informatyka /prawie/ bez komputera”)

Strona platformy:
https://code.org/

Strona projektu „Computer Science Unplugged”:
https://csunplugged.org/en/

Strona projektu „Informatyka dla Jasia i Joasi”:
http://jasijoasia.edu.pl

Strona zestawu BeCreo:
http://becreo.eu/index.php/pl/

Sysło M.M., (2016), Wprowadzając… porządek, Toruń: Informatyka w Edukacji:
http://iwe.mat.umk.pl/archiwum/iwe2016//materials/II_Drukarnia_IwE/04.pdf

Szyfry harcerskie:
http://www.szyfry.matw.pl/

Trasa Świętego Mikołaja:
https://santatracker.google.com/village.html

190

WyKAZ ADRESÓW INTERNETOWYCH

WeDo – oprogramowanie do pobrania:
https://education.lego.com/en-us/downloads/wedo-2/software

WeDo – produkty Lego:
https://www.akcesedukacja.pl/lego-wedo-2-0/

WeDo – Scratch:
https://scratch.mit.edu/wedo

Wystąpienie prof. Mitcha Resnicka pt. Nauczmy dzieciaki kodować:
https://www.ted.com/talks/
mitch_resnick_let_s_teach_kids_to_code?language=pl#t-535610

Zanurkuj w Pythonie – podręcznik Wikibooks:
https://pl.wikibooks.org/wiki/Zanurkuj_w_Pythonie

Zasoby „Mistrzowie Kodowania”:
http://wiki.mistrzowiekodowania.pl

	Koncepcja i założenia ogólne
	Ramowy program szkolenia dla nauczycieli
klas 1–3 (I ETAP EDUKACYJNY)
	Ramowy program szkolenia DLA NAUCZYCIELI KLAS 4-6 (II ETAP EDUKACYJNY)
	Ramowy program szkolenia dla nauczycieli klas 4-6 (ii etap edukacyjny) – wersja skrócona
	Ramowy program szkolenia dla nauczycieli klas 7-8 (ii etap edukacyjny)
	Załącznik 1
Wymagania wstępne – kompetencje TIK
	Załącznik 2
Wykaz adresów internetowych

